ÌâÄ¿ÄÚÈÝ
14£®£¨1£©ÇóÅ×ÎïÏßy=$\frac{1}{4}$x2+bx+cÓëÖ±Ïßy=kx+$\frac{3}{2}$µÄ½âÎöʽ£»
£¨2£©¢ÙµãPÊÇÅ×ÎïÏßÉÏA¡¢D¼äµÄÒ»¸ö¶¯µã£¬¹ýPµã×÷PM¡ÎyÖá½»Ïß¶ÎADÓÚMµã£¬¹ýDµã×÷DE¡ÍyÖáÓÚµãE£¬ÎÊÊÇ·ñ´æÔÚPµãʹµÃËıßÐÎPMECΪƽÐÐËıßÐΣ¿Èô´æÔÚ£¬ÇëÇó³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ
¢Ú×÷PN¡ÍADÓÚµãN£¬Éè¡÷PMNµÄÖܳ¤Îªm£¬µãPµÄºá×ø±êΪt£¬ÇómÓëtµÄº¯Êý¹ØÏµÊ½£¬²¢Çó³ömµÄ×î´óÖµ£®
·ÖÎö £¨1£©°ÑA¡¢BÁ½µãµÄ×ø±ê´úÈëy=$\frac{1}{4}$x2+bx+c¿ÉÇó³öb¡¢c£¬´Ó¶øµÃµ½Å×ÎïÏß½âÎöʽ£»°ÑAµã×ø±ê´úÈëy=kx+$\frac{3}{2}$¿ÉÇó³ökµÄÖµ£¬´Ó¶øµÃµ½Ò»´Îº¯Êý½âÎöʽ£»
£¨2£©ÏȽⷽ³Ì×é$\left\{\begin{array}{l}{y=\frac{1}{4}{x}^{2}-\frac{3}{4}x-\frac{5}{2}}\\{y=\frac{3}{4}x+\frac{3}{2}}\end{array}\right.$µÃD£¨8£¬$\frac{15}{2}$£©£¬ÔÙÈ·¶¨C£¨0£¬$\frac{3}{2}$£©£¬ÔòCE=6£¬É裨x£¬$\frac{1}{4}$x2-$\frac{3}{4}$x-$\frac{5}{2}$£©£¬ÔòM£¨x£¬$\frac{3}{4}x$+$\frac{3}{2}$£©£¬Ôò¿É±íʾ³öMN=-$\frac{1}{4}$x2+$\frac{3}{2}$x+4£¬ÀûÓÃÆ½ÐÐËıßÐεÄÅж¨·½·¨£¬µ±PM=CEʱ£¬ËıßÐÎPMECΪƽÐÐËıßÐΣ¬¼´-$\frac{1}{4}$x2+$\frac{3}{2}$x+4=6£¬È»ºó½â·½³Ì¼´¿ÉµÃµ½Pµã×ø±ê£»
£¨3£©ÏÈÀûÓù´¹É¶¨Àí¼ÆËã³öCD=10£¬É裨t£¬$\frac{1}{4}$t2-$\frac{3}{4}$t-$\frac{5}{2}$£©£¬ÔòM£¨t£¬$\frac{3}{4}$t+$\frac{3}{2}$£©£¬Ôò±íʾ³öMN=-$\frac{1}{4}$t2+$\frac{3}{2}$t+4£¬ÔÙÖ¤Ã÷Rt¡÷PMN¡×Rt¡÷DCE£¬ÀûÓÃÏàËÆ±È¿ÉµÃµ½MN=$\frac{3}{5}$£¨-$\frac{1}{4}$t2+$\frac{3}{2}$t+4£©£¬PN=$\frac{4}{5}$£¨-$\frac{1}{4}$t2+$\frac{3}{2}$t+4£©£¬
ËùÒÔm=$\frac{12}{5}$£¨-$\frac{1}{4}$t2+$\frac{3}{2}$t+4£©£¬È»ºó¸ù¾Ý¶þ´Îº¯ÊýµÄÐÔÖÊÇó½â£®
½â´ð ½â£º£¨1£©°ÑA£¨-2£¬0£©£¬B£¨0£¬-$\frac{5}{2}$£©´úÈëy=$\frac{1}{4}$x2+bx+cµÃ$\left\{\begin{array}{l}{1-2b+c=0}\\{c=-\frac{5}{2}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{b=-\frac{3}{4}}\\{c=-\frac{5}{2}}\end{array}\right.$£¬
ËùÒÔÅ×ÎïÏß½âÎöʽΪy=$\frac{1}{4}$x2-$\frac{3}{4}$x-$\frac{5}{2}$£»
°ÑA£¨-2£¬0£©´úÈëy=kx+$\frac{3}{2}$µÃ-2k+$\frac{3}{2}$=0£¬½âµÃk=$\frac{3}{4}$£¬
ËùÒÔÒ»´Îº¯Êý½âÎöʽΪy=$\frac{3}{4}$x+$\frac{3}{2}$£»
£¨2£©´æÔÚ£®
½â·½³Ì×é$\left\{\begin{array}{l}{y=\frac{1}{4}{x}^{2}-\frac{3}{4}x-\frac{5}{2}}\\{y=\frac{3}{4}x+\frac{3}{2}}\end{array}\right.$µÃ$\left\{\begin{array}{l}{x=-2}\\{y=0}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=8}\\{y=\frac{15}{2}}\end{array}\right.$£¬ÔòD£¨8£¬$\frac{15}{2}$£©£¬
µ±x=0ʱ£¬y=$\frac{3}{4}$x+$\frac{3}{2}$=+$\frac{3}{2}$£¬ÔòC£¨0£¬$\frac{3}{2}$£©£¬
¡ßDE¡ÍyÖᣬ
¡àE£¨0£¬$\frac{15}{2}$£©£¬
¡àCE=OE-OC=6£¬
É裨x£¬$\frac{1}{4}$x2-$\frac{3}{4}$x-$\frac{5}{2}$£©£¬ÔòM£¨x£¬$\frac{3}{4}x$+$\frac{3}{2}$£©£¬
¡àMN=$\frac{3}{4}x$+$\frac{3}{2}$-£¨$\frac{1}{4}$x2-$\frac{3}{4}$x-$\frac{5}{2}$£©=-$\frac{1}{4}$x2+$\frac{3}{2}$x+4£¬
¡ßCE¡ÎPM£¬
¡àµ±PM=CEʱ£¬ËıßÐÎPMECΪƽÐÐËıßÐΣ¬
¼´-$\frac{1}{4}$x2+$\frac{3}{2}$x+4=6£¬½âµÃx1=2£¬x2=4£¬
¡à´ËʱPµã×ø±êΪ£¨2£¬-3£©£¬£¨4£¬-$\frac{3}{2}$£©£»
£¨3£©ÔÚRt¡÷CDEÖУ¬¡ßCE=6£¬DE=8£¬
¡àCD=10£¬
É裨t£¬$\frac{1}{4}$t2-$\frac{3}{4}$t-$\frac{5}{2}$£©£¬ÔòM£¨t£¬$\frac{3}{4}$t+$\frac{3}{2}$£©£¬
¡àMN=$\frac{3}{4}$t+$\frac{3}{2}$-£¨$\frac{1}{4}$t2-$\frac{3}{4}$t-$\frac{5}{2}$£©=-$\frac{1}{4}$t2+$\frac{3}{2}$t+4£¬
¡ßPM¡ÎCE£¬
¡à¡ÏECD=¡ÏPMN£¬
¡àRt¡÷PMN¡×Rt¡÷DCE£¬
¡à$\frac{PM}{CD}$=$\frac{MN}{CE}$=$\frac{PN}{DE}$£¬
¡àMN=$\frac{3}{5}$£¨-$\frac{1}{4}$t2+$\frac{3}{2}$t+4£©£¬PN=$\frac{4}{5}$£¨-$\frac{1}{4}$t2+$\frac{3}{2}$t+4£©£¬
¡àm=PM+MN+PN=$\frac{12}{5}$£¨-$\frac{1}{4}$t2+$\frac{3}{2}$t+4£©=-$\frac{3}{5}$£¨t-3£©2+15£¬
µ±t=3ʱ£¬mÓÐ×î´óÖµ£¬×î´óֵΪ15£®
µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÌ⣺ÊìÁ·ÕÆÎÕ¶þ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷¡¢¶þ´Îº¯ÊýµÄÐÔÖÊºÍÆ½ÐÐËıßÐεÄÅж¨£»»áÀûÓôý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£»»áÀûÓù´¹É¶¨ÀíºÍÏàËÆ±È¼ÆËãÏ߶εij¤£»Àí½â×ø±êÓëͼÐεÄÐÔÖÊ£®