题目内容

14.定义:a是不为1的有理数,我们把$\frac{1}{1-a}$称为a的差倒数,如:2的差倒数是$\frac{1}{1-2}$=-1,-1的差倒数是$\frac{1}{1-(-1)}$=$\frac{1}{2}$,已知a1=-$\frac{1}{3}$,a2是a1的差倒数,a1是a2的差倒数,a4是a3的差倒数,…,以此类推,a2009的值为(  )
A.-$\frac{1}{3}$B.$\frac{3}{4}$C.4D.$\frac{4}{3}$

分析 计算出前面的几个数据即可发现规律,3个数一个轮回,于是a2009=a2

解答 解:∵a1=-$\frac{1}{3}$,
∴a2=$\frac{1}{1-(-\frac{1}{3})}$=$\frac{3}{4}$,
a3=$\frac{1}{1-\frac{3}{4}}$=4,
a4=$\frac{1}{1-4}$=-$\frac{1}{3}$,

∴每3个数为一周期循环,
∵2009÷3=669…2,
∴a2009=a2=$\frac{3}{4}$,
故选:B.

点评 此题考查了数字的变化类,是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网