题目内容

如图,四边形ABCD的对角线AC,BD交于点O,且OA=OC,OB=OD,则图中全等的三角形共有
 
对.
考点:全等三角形的判定
专题:
分析:利用平行四边形的对边平行且相等,对角线互相平分,对角相等可证出4组全等三角形.
解答:解:∵OA=OC,OB=OD,
∴四边形ABCD是平行四边形,
∴AB=CD,AD=BC,且AB∥CD,AD∥BC,∠ABC=∠CDA,∠BAD=∠DCB,
在△AOB和△COD中,
OA=OC,OB=OD,∠AOB=∠COD,
∴△AOB≌△COD,
同理可证△AOD≌△COB,
在△ABD和△CDB中,
AB=CD,∠BAC=∠DCB,AD=CB,
∴△ABD≌△CDB,
同理可证△ABC≌△DCA.
故答案是:4.
点评:本题考查了平行四边形的性质和全等三角形的判定,解答本题的关键是熟练掌握全等三角形的判断,此题有一定的难度.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网