题目内容
考点:平行四边形的判定
专题:
分析:由题目的已知条件可知添加∠F=∠CDE,即可证明△DEC≌△FEB,从而进一步证明DC=BF=AB,且DC∥AB,进而证明四边形ABCD为平行四边形.
解答:解:条件是:∠F=∠CDE,
理由如下:
∵∠F=∠CDE
∴CD∥AF
在△DEC与△FEB中,
,
∴△DEC≌△FEB(ASA)
∴DC=BF,∠C=∠EBF
∴AB∥DC
∵AB=BF
∴DC=AB
∴四边形ABCD为平行四边形
故答案为:∠F=∠CDE.
理由如下:
∵∠F=∠CDE
∴CD∥AF
在△DEC与△FEB中,
|
∴△DEC≌△FEB(ASA)
∴DC=BF,∠C=∠EBF
∴AB∥DC
∵AB=BF
∴DC=AB
∴四边形ABCD为平行四边形
故答案为:∠F=∠CDE.
点评:本题是一道探索性的试题,考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.
练习册系列答案
相关题目
| A、2与2 | B、3与1 |
| C、3与2 | D、1与3 |