ÌâÄ¿ÄÚÈÝ
12£®¹Û²ìÏÂ±í£º| ÐòºÅ | 1 | 2 | 3 | ¡ |
ͼÐÎ | x¡¡¡¡¡¡¡¡x y x¡¡¡¡¡¡¡¡¡¡x | ¡¡x¡¡¡¡¡¡x¡¡¡¡¡¡x y¡¡¡¡¡¡y x¡¡¡¡¡¡¡¡¡¡¡¡¡¡x y¡¡¡¡¡¡y x¡¡¡¡¡¡x¡¡¡¡¡¡x | x¡¡¡¡¡¡x¡¡¡¡¡¡x¡¡¡¡¡¡¡¡x y¡¡¡¡¡¡y¡¡¡¡¡¡y x¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡x y¡¡¡¡¡¡y¡¡¡¡¡¡y x¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡x y¡¡¡¡¡¡y¡¡¡¡¡¡y x¡¡¡¡¡¡x¡¡¡¡¡¡x¡¡¡¡¡¡¡¡x | ¡ |
£¨1£©µÚ2¸ñµÄ¡°ÌØÕ÷¶àÏîʽ¡±Îª9x+4y£¬µÚn¸ñµÄ¡°ÌØÕ÷¶àÏîʽ¡±Îª£¨n+1£©2x+n2y£»£¨nΪÕýÕûÊý£©
£¨2£©ÈôµÚ1¸ñµÄ¡°ÌØÕ÷¶àÏîʽ¡±µÄֵΪ-8£¬µÚ2¸ñµÄ¡°ÌØÕ÷¶àÏîʽ¡±µÄֵΪ-11£®
¢ÙÇóx£¬yµÄÖµ£»
¢ÚÔÚ´ËÌõ¼þÏ£¬µÚn¸ñµÄÌØÕ÷¶àÏîʽÊÇ·ñÓÐ×îСֵ£¿ÈôÓУ¬Çó×îСֵºÍÏàÓ¦µÄnÖµ£»ÈôûÓУ¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©ÀûÓÃÒÑÖª±í¸ñÖÐx£¬y¸öÊý±ä»¯¹æÂɵóöµÚ2¸ñµÄ¡°ÌØÕ÷¶àÏîʽ¡±ÒÔ¼°µÚn¸ñµÄ¡°ÌØÕ÷¶àÏîʽ¡±£»
£¨2£©¢ÙÀûÓã¨1£©ÖÐËùÇóµÃ³ö¹ØÓÚx£¬yµÄµÈʽ×é³É·½³Ì×éÇó³ö´ð°¸£»
¢ÚÀûÓöþ´Îº¯Êý×îÖµÇ󷨵óö´ð°¸£®
½â´ð ½â£º£¨1£©µÚ2¸ñµÄ¡°ÌØÕ÷¶àÏîʽ¡±Îª£º9x+4y£»µÚn¸ñµÄ¡°ÌØÕ÷¶àÏîʽ¡±Îª£º£¨n+1£©2x+n2y£»
¹Ê´ð°¸Îª£º9x+4y£»£¨n+1£©2x+n2y£»
£¨2£©¢Ù¡ßµÚ1¸ñµÄ¡°ÌØÕ÷¶àÏîʽ¡±µÄֵΪ-8£¬µÚ2¸ñµÄ¡°ÌØÕ÷¶àÏîʽ¡±µÄֵΪ-11£¬
¡à¸ù¾ÝÌâÒâ¿ÉµÃ£º$\left\{\begin{array}{l}4x+y=-8\\ 9x+4y=-11\end{array}\right.$
½âµÃ£º$\left\{\begin{array}{l}{x=-3}\\{y=4}\end{array}\right.$£»
¢ÚÓÐ×îСֵ£¬
½«x=-3£¬y=4´úÈ루n+1£©2x+n2y=£¨-3£©£¨n+1£©2+4n2=n2-6n-3£¬
Éèy=n2-6n-3£¬
·½³ÌΪ¶þ´Îº¯Êý£¬Å×ÎïÏß¿ª¿ÚÏòÉÏ£¬ÓÐ×îСֵ£¬
µ±$n=-\frac{b}{2a}=-\frac{-6}{2}=3$ʱ£¬yÈ¡µÃ×îСֵ£¬
½«n=3´úÈëµÃy=-12£¬
µ±n=3ʱ£¬×îСֵΪ-12£®
µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁ˶þÔªÒ»´Î·½³Ì×éµÄÓ¦ÓÃÒÔ¼°¶þ´Îº¯ÊýµÄÓ¦ÓúÍÊý×ֱ仯¹æÂɵÈ֪ʶ£¬¸ù¾ÝÌâÒâµÃ³öµÚn¸ñµÄ¡°ÌØÕ÷¶àÏîʽ¡±ÊǽâÌâ¹Ø¼ü£®