题目内容

5.已知,如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.
(1)求证:AE=BE;
(2)求证:FE是⊙O的切线;
(3)若FE=4,FC=2,求⊙O的半径及CG的长.

分析 (1)连接CE和OE,因为BC是直径,所以∠BEC=90°,即CE⊥BE;再根据等腰三角形三线合一性质,即可得出结论;
(2)证明OE是△ABC的中位线,得出OE∥AC,再由已知条件得出FE⊥OE,即可得出结论;
(3)由切割线定理求出直径,得出半径的长,由平行线得出三角形相似,得出比例式,即可得出结果.

解答 (1)证明:连接CE,如图1所示:
∵BC是直径,
∴∠BEC=90°,
∴CE⊥AB;
又∵AC=BC,
∴AE=BE.
(2)证明:连接OE,如图2所示:
∵BE=AE,OB=OC,
∴OE是△ABC的中位线,
∴OE∥AC,AC=2OE=6.
又∵EG⊥AC,
∴FE⊥OE,
∴FE是⊙O的切线.
(3)解:∵EF是⊙O的切线,∴FE2=FC•FB.
设FC=x,则有2FB=16,
∴FB=8,
∴BC=FB-FC=8-2=6,
∴OB=OC=3,
即⊙O的半径为3;
∴OE=3,
∵OE∥AC,
∴△FCG∽△FOE,
∴$\frac{CG}{OE}=\frac{FC}{FO}$,
即$\frac{CG}{3}=\frac{2}{2+3}$,
解得:CG=$\frac{6}{5}$.

点评 本题考查了切线的判定、等腰三角形的性质、三角形中位线的判定、切割线定理、相似三角形的判定与性质;熟练掌握切线的判定,由三角形中位线定理得出OE∥AC是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网