题目内容
17.分析 由△ABC是等边三角形,CD是∠ACB的平分线,利用三线合一的性质,可得AD=BD,又由DE∥BC,可得DE是△ABC的中位线,即可求得DE的长,易证得△DCE是等腰三角形,则可求得答案.
解答 解:∵△ABC是等边三角形,CD是∠ACB的平分线,
∴AD=BD,∠ACD=∠BCD,
∵DE∥BC,
∴DE=$\frac{1}{2}$BC=$\frac{1}{2}$×4=2,∠EDC=∠BCD,
∴∠EDC=∠ACD,
∴EC=DE=$\frac{1}{2}$×4=2.
故答案为2.
点评 本题考查了等边三角形的性质、等腰三角形的判定与性质以及三角形中位线的性质.注意由角平分线与平行线,可构造等腰三角形.
练习册系列答案
相关题目
8.
如图,在△ABC中,AB=AC=2,∠ABC=30°,点P、Q分别在边AB、AC上,将△APQ沿PQ翻折,点A落到点A′处,则线段BA′长度的最小值是( )
| A. | 2$\sqrt{3}$-2 | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
5.如图,给出线段a、h,作等腰三角形ABC,使AB=AC=a,BC边上的高AD=h.张红的作法是:(1)作线段AD=h;(2)作线段AD的垂线MN;(3)以点A为圆心,a为半径作弧,与MN分别交于点B、C;(4)连接AB、AC、△ABC为所求作的等腰三角形.上述作法的四个步骤中,你认为有错误的一步是( )

| A. | (1) | B. | (2) | C. | (3) | D. | (4) |