题目内容
考点:抛物线与x轴的交点
专题:
分析:把(0,-3)代入抛物线的解析式求出c的值,在(1,0)和(3,0)之间取一个点,分别把x=1和x=3它的坐标代入解析式即可得出不等式组,求出答案即可.
解答:解:把(0,-3)代入抛物线的解析式得:c=-3,
∴y=x2+bx-3,
∵使该抛物线与x轴的一个交点在(1,0)和(3,0)之间,
∴把x=1代入y=x2+bx-3得:y=1+b-3<0
把x=3代入y=x2+bx-3得:y=9+3b-3>0,
∴-2<b<2,
故答案为:-2<b<2.
∴y=x2+bx-3,
∵使该抛物线与x轴的一个交点在(1,0)和(3,0)之间,
∴把x=1代入y=x2+bx-3得:y=1+b-3<0
把x=3代入y=x2+bx-3得:y=9+3b-3>0,
∴-2<b<2,
故答案为:-2<b<2.
点评:本题主要考查对抛物线与x轴的交点的理解和掌握,能理解抛物线与x轴的交点的坐标特点是解此题的关键.
练习册系列答案
相关题目
二元一次方程3a+b=9在正整数范围内的解的个数是( )
| A、1个 | B、2个 | C、3个 | D、4个 |