题目内容

如图,在边长为6
2
的正方形ABCD中,E是AB边上一点,G是AD延长线上一点,BE=DG,连接EG,CF⊥EG交EG于点H,交AD于点F,连接CE,BH.若BH=8,则FG=
 
考点:全等三角形的判定与性质,等腰直角三角形,正方形的性质,相似三角形的判定与性质
专题:几何图形问题,压轴题
分析:如解答图,连接CG,首先证明△CGD≌△CEB,得到△GCE是等腰直角三角形;过点H作AB、BC的垂线,垂足分别为点M、N,进而证明△HEM≌△HCN,得到四边形MBNH为正方形,由此求出CH、HN、CN的长度;最后利用相似三角形Rt△HCN∽Rt△GFH,求出FG的长度.
解答:解:如图所示,连接CG.
在△CGD与△CEB中
BE=DG
∠EBC=∠GDC=90°
BC=DC

∴△CGD≌△CEB(SAS),
∴CG=CE,∠GCD=∠ECB,
∴∠GCE=90°,即△GCE是等腰直角三角形.
又∵CH⊥GE,
∴CH=EH=GH.
过点H作AB、BC的垂线,垂足分别为点M、N,则∠MHN=90°,
又∵∠EHC=90°,
∴∠1=∠2,
∴∠HEM=∠HCN.
在△HEM与△HCN中,
∠1=∠2
EH=CH
∠HEM=∠HCN

∴△HEM≌△HCN(ASA).
∴HM=HN,
∴四边形MBNH为正方形.
∵BH=8,
∴BN=HN=4
2

∴CN=BC-BN=6
2
-4
2
=2
2

在Rt△HCN中,由勾股定理得:CH=2
10

∴GH=CH=2
10

∵HM∥AG,
∴∠1=∠3,
∴∠2=∠3.
又∵∠HNC=∠GHF=90°,
∴Rt△HCN∽Rt△GFH.
CH
FG
=
HN
GH
,即
2
10
FG
=
4
2
2
10

∴FG=5
2

故答案为:5
2
点评:本题是几何综合题,考查了全等三角形、相似三角形、正方形、等腰直角三角形、勾股定理等重要知识点,难度较大.作出辅助线构造全等三角形与相似三角形,是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网