题目内容

若分式方程 有增根,则增根是( )

A. x=1 B. x=1或x=0 C. x=0 D. 不确定

A 【解析】方程两边同乘x(x-1),得 6x=x+5, 解得:x=1, 检验:当x=1时,x(x-1)=0,所以x=1是原方程的增根,原方程无解, 故选A.
练习册系列答案
相关题目

直角坐标平面上将二次函数的图象向左平移1个单位,再向上平移1个单位,则其顶点为(  )

A. (0,0)

B. (1,-2)

C. (0,-1)

D. (-2,1)

C 【解析】由题意得原抛物线的顶点为(1,-2),然后由图象向左平移1个单位,再向上平移1个单位,可得新抛物线的顶点为(0,-1). 故选:C.

形状与抛物线相同,对称轴是x=-2,且过点(0,3)的抛物线是( )

A.

B.

C.

D.

D 【解析】设所求抛物线的函数关系式为,由抛物线过点(0,3),可得:c=3, 由抛物线形状与相同, 分为两种情况:①开口向下,则a<0, 又∵对称轴x=-2,则x==-2.则b<0, 由此可得出B选项符合题意. ②开口向下,则a>0, 又∵对称轴x=-2,则x==-2.则b>0, 由此可得出A选项符合题意, 综合上述,符合条件的是选项D. ...

当a=_______时,方程=2的解为4.

【解析】由题意得: , 解得:a=, 经检验a=符合原方程, 故答案为: .

方程 的解是______.

x=20 【解析】方程两边同时乘3x,得 120-4x=40, 解得:x=20, 检验:当x=20时,3x=60≠0, 所以x=20是原方程的根, 故答案为:x=20.

已知抛物线y=ax2+bx+c的大致图象如图所示,试确定a,b,c,b2-4ac及a+b+c的符号.

a+b+c>0 【解析】分析:根据二次函数的图形确定a、b、c的符号,根据抛物线与x轴的交点确定的符号,由当x=1时,函数值的符号确定a+b+c的符号. 本题解析: ∵抛物线开口向上,∴a>0.∵抛物线与y轴的交点在y轴的负半轴上,∴C<0.又∵对称轴在y轴左侧,∴ab>0.∵a>0,∴b>0.∵抛物线与x轴有两个交点,∴△=b2-4ac>0.∵当x=1时,y>0,∴a+b+c>...

已知二次函数的图象开口向上,且顶点在y轴的负半轴上,请你写出一个满足条件的二次函数的表达式________.

y=x2-2 【解析】依题意,只要满足二次项系数为正数,顶点坐标为(0,k),k<0即可, 根据顶点式写解析式,本题答案不唯一,如y=x²-2.故答案为:y=x2-2.

如图,甲、乙两船同时从港口O出发,其中甲船沿北偏西30°方向航行,乙船沿南偏西70°方向航行,已知两船的航行速度相同,如果1小时后甲、乙两船分别到达点A、B处,那么点B位于点A的(  )

A. 南偏西40° B. 南偏西30° C. 南偏西20° D. 南偏西10°

C 【解析】试题分析:由甲船沿北偏西30°方向航行,乙船沿南偏西70°方向航行,得出∠BOA的度数,由两船的航行速度相同,得出AO=BO,得出∠BAO=50°,以及求出∠BAD的度数,得出点B位于点A的方向,故本题选C.

在四边形ABCD中,如果∠A:∠B:∠C:∠D=1:2:3:4,则∠D=______

144° 【解析】设∠A=x°,则∠B=2x°,∠C=3x°,∠D=4x°, ∵∠A+∠B+∠C+∠D=360°, ∴x+2x+3x+4x=360, 解得x=36°, ∴2x=72°,3x=108°,4x=144°, 所以∠A=36°,∠B=72°,∠C=108°,∠D=144°, 故答案为:144°.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网