题目内容

如图,甲、乙两船同时从港口O出发,其中甲船沿北偏西30°方向航行,乙船沿南偏西70°方向航行,已知两船的航行速度相同,如果1小时后甲、乙两船分别到达点A、B处,那么点B位于点A的(  )

A. 南偏西40° B. 南偏西30° C. 南偏西20° D. 南偏西10°

C 【解析】试题分析:由甲船沿北偏西30°方向航行,乙船沿南偏西70°方向航行,得出∠BOA的度数,由两船的航行速度相同,得出AO=BO,得出∠BAO=50°,以及求出∠BAD的度数,得出点B位于点A的方向,故本题选C.
练习册系列答案
相关题目

已知二次函数的图象经过点(0,-1)、(1,-3)、(-1,3),求这个二次函数的解析式.

【解析】分析:设二次函数的解析式为,再把(0,-1)、(1,-3)、(-1,3)分别代入得到关于a、b、c的方程组,解方程组求出a、b、c的值,从而得到二次函数的解析式. 本题解析:设二次函数的解析式为, 由题意得, 解得. 故二次函数的解析式为.

若分式方程 有增根,则增根是( )

A. x=1 B. x=1或x=0 C. x=0 D. 不确定

A 【解析】方程两边同乘x(x-1),得 6x=x+5, 解得:x=1, 检验:当x=1时,x(x-1)=0,所以x=1是原方程的增根,原方程无解, 故选A.

如果点(-2,-3)和(5,-3)都是抛物线y=ax2+bx+c上的点,那么抛物线的对称轴是 ( )

A. x=3 B. x=-3 C. x= D. x=-

C 【解析】点(?2,?3)和(5,?3)都是抛物线y=ax²+bx+c上的点,得 (?2,?3)、(5,?3)关于对称轴对称, 即对称轴过(?2,?3)、(5,?3)的中点, x=, 故选C.

某时刻海上点P处有一客轮,测得灯塔A位于P的北偏东30°方向,且相距50海里.客轮以60海里/小时的速度沿北偏西60°方向航行小时到达B处,那么tan∠BAP=(  )

A. B. C. D.

A 【解析】试题分析:∵灯塔A位于客轮P的北偏东30°方向,且相距50海里,∴PA=50, ∵客轮以60海里/小时的速度沿北偏西60°方向航行小时到达B处, ∴∠APB=90° BP=60×=40, ∴tan∠BAP=,故选A.

如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km、从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD的长)为(  )

A. 4km B. (2+)km C. 2km D. (4-)km

B 【解析】试题分析:根据题意中方位角的特点,过点B作BE⊥AC,交AC于点E,由∠CAB=45°,AB=2km,可知BE=km,根据题意还可知∠BCA=∠BCD=22.5°,因此CB是∠ACD的角平分线,根据角平分线的性质可得:BD=BE=km,因此CD=AD=AB+BD=(2+)km,故选B.

如图,等腰梯形ABCD下底与上底的差恰好等于腰长,DE∥AB.则∠DEC等于(    )

A. 75° B. 60° C. 45° D. 30°

B 【解析】试题解析:∵DE∥AB,AD∥BC, ∴四边形ABED为平行四边形, ∴AD=BE, ∵BC-AD=AB=EC, ∵等腰梯形ABCD, ∴AB=DC=EC, ∴为等边三角形, ∴∠DEC=60°. 故选B.

若关于的方程的解为正数,则的取值范围是_____.

且 【解析】解方程得: ,因为它的解是正数,则 ,得且. 故答案: 且.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网