ÌâÄ¿ÄÚÈÝ
4£®ÓÐÒ»¸±Ö±½ÇÈý½Ç°å£¬ÔÚÈý½Ç°åABCÖУ¬¡ÏBAC=90¡ã£¬AB=AC=6£¬ÔÚÈý½Ç°åDEFÖУ¬¡ÏFDE=90¡ã£¬DF=4£¬DE=4$\sqrt{3}$£¬½«Õ⸱ֱ½ÇÈý½Ç°å°´Èçͼ£¨1£©ËùʾλÖðڷţ¬µãBÓëµãFÖØºÏ£¬Ö±½Ç±ßBAÓëFDÔÚͬһÌõÖ±ÏßÉÏ£®Ï̶ֹ¨Èý½Ç°åABC£¬½«Èý½Ç°åDEFÑØÉäÏßBA·½ÏòƽÐÐÒÆ¶¯£¬µ±µãFÔ˶¯µ½µãAʱֹͣÔ˶¯£®£¨1£©Èçͼ£¨2£©£¬µ±Èý½Ç°åDEFÔ˶¯µ½µãDÓëµãAÖØºÏʱ£¬ÉèEFÓëBC½»ÓÚµãM£¬Ôò¡ÏEMC=15¶È£»
£¨2£©Èçͼ£¨3£©£¬ÔÚÈý½Ç°åDEFÔ˶¯¹ý³ÌÖУ¬µ±EF¾¹ýµãCʱ£¬ÇóFCµÄ³¤£»
£¨3£©ÔÚÈý½Ç°åDEFÔ˶¯¹ý³ÌÖУ¬µ±DÔÚBAµÄÑÓ³¤ÏßÉÏʱ£¬ÉèBF=x£¬Á½¿éÈý½Ç°åÖØµþ²¿·ÖµÄÃæ»ýΪy£®ÇóyÓëxµÄº¯Êý¹ØÏµÊ½£¬²¢Çó³ö¶ÔÓ¦µÄxȡֵ·¶Î§£®
·ÖÎö £¨1£©ÈçÌâͼ2Ëùʾ£¬ÓÉÈý½ÇÐεÄÍâ½ÇÐÔÖʿɵáÏEMC=¡ÏFMB=¡ÏDFE-¡ÏABC£»
£¨2£©ÈçÌâͼ3Ëùʾ£¬ÔÚRt¡÷ACFÖУ¬½âÖ±½ÇÈý½ÇÐμ´¿ÉµÃ³öFCµÄ³¤£»
£¨3£©ÈÏÕæ·ÖÎöÈý½Ç°åµÄÔ˶¯¹ý³Ì£¬Ã÷È·²»Í¬Ê±¶ÎÖØµþͼÐεı仯Çé¿ö£º£¨I£©µ±0¡Üx¡Ü2ʱ£¬Èç´ðͼ1Ëùʾ£»£¨II£©µ±2£¼x¡Ü6-2$\sqrt{3}$ʱ£¬Èç´ðͼ2Ëùʾ£»£¨III£©µ±6-2$\sqrt{3}$£¼x¡Ü6ʱ£¬Èç´ðͼ3Ëùʾ£®
½â´ð
½â£º£¨1£©ÈçÌâͼ2Ëùʾ£¬¡ßÔÚÈý½Ç°åDEFÖУ¬¡ÏFDE=90¡ã£¬DF=4£¬DE=4$\sqrt{3}$£¬
¡àtan¡ÏDFE=$\frac{DE}{DF}$=$\sqrt{3}$£¬
¡à¡ÏDFE=60¡ã£¬
¡à¡ÏEMC=¡ÏFMB=¡ÏDFE-¡ÏABC=60¡ã-45¡ã=15¡ã£»
¹Ê´ð°¸Îª£º15¡ã£»
£¨2£©ÈçÌâͼ3Ëùʾ£¬µ±EF¾¹ýµãCʱ£¬
FC=$\frac{AC}{sin¡ÏAFC}$=$\frac{6}{sin60¡ã}$=$\frac{6}{\frac{\sqrt{3}}{2}}$=4$\sqrt{3}$£»
£¨3£©ÔÚÈý½Ç°åDEFÔ˶¯¹ý³ÌÖУ¬![]()
£¨I£©µ±0¡Üx¡Ü2ʱ£¬Èç´ðͼ1Ëùʾ£¬ÉèDE½»BCÓÚµãG£®
¹ýµãM×÷MN¡ÍABÓÚµãN£¬Ôò¡÷MNBΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬MN=BN£®
ÓÖ¡ßNF=$\frac{MN}{tan60¡ã}$=$\frac{\sqrt{3}}{3}$MN£¬BN=NF+BF£¬
¡àNF+BF=MN£¬¼´$\frac{\sqrt{3}}{3}$MN+x=MN£¬
½âµÃ£ºMN=$\frac{3+\sqrt{3}}{2}x$£®
y=S¡÷BDG-S¡÷BFM
=$\frac{1}{2}$BD•DG-$\frac{1}{2}$BF•MN
=$\frac{1}{2}$£¨x+4£©2-$\frac{1}{2}$x•$\frac{3+\sqrt{3}}{2}$x
=-$\frac{\sqrt{3}+1}{4}$x2+4x+8£»
£¨II£©µ±2£¼x¡Ü6-2$\sqrt{3}$ʱ£¬Èç´ðͼ2Ëùʾ£¬
¹ýµãM×÷MN¡ÍABÓÚµãN£¬Ôò¡÷MNBΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬MN=BN£®
ÓÖ¡ßNF=$\frac{MN}{tan60¡ã}$=$\frac{\sqrt{3}}{3}$MN£¬BN=NF+BF£¬
¡àNF+BF=MN£¬¼´$\frac{\sqrt{3}}{3}$MN+x=MN£¬
½âµÃ£ºMN=$\frac{3+\sqrt{3}}{2}$x£®
y=S¡÷ABC-S¡÷BFM
=$\frac{1}{2}$AB•AC-$\frac{1}{2}$BF•MN
=$\frac{1}{2}$¡Á62-$\frac{1}{2}$x•$\frac{3+\sqrt{3}}{2}$x
=-$\frac{3+\sqrt{3}}{4}$x2+18£»
£¨III£©µ±6-2$\sqrt{3}$£¼x¡Ü6ʱ£¬Èç´ðͼ3Ëùʾ£¬ÉèBF=x£¬ÔòAF=AB-BF=6-x£¬![]()
ÉèACÓëEF½»ÓÚµãM£¬ÔòAM=AF•tan60¡ã=$\sqrt{3}$£¨6-x£©£®
y=S¡÷AFM=$\frac{1}{2}$AF•AM=$\frac{1}{2}$£¨6-x£©•$\sqrt{3}$£¨6-x£©=$\frac{\sqrt{3}}{2}$x2-6$\sqrt{3}$x+18$\sqrt{3}$£®
×ÛÉÏËùÊö£¬yÓëxµÄº¯Êý½âÎöʽΪ£º
y=$\left\{\begin{array}{l}{-\frac{\sqrt{3}+1}{4}{x}^{2}+4x+8£¨0¡Üx¡Ü2£©}\\{-\frac{3+\sqrt{3}}{4}{x}^{2}+18£¨2£¼x¡Ü6-2\sqrt{3}£©}\\{\frac{\sqrt{3}}{2}{x}^{2}-6\sqrt{3}x+18£¨6-2\sqrt{3}£¼x¡Ü6£©}\end{array}\right.$£®
µãÆÀ ±¾ÌâÊôÓÚÈý½ÇÐÎ×ÛºÏÌ⣬½âÌâµÄ¹Ø¼üÊÇÈÏÕæ·ÖÎöÈý½Ç°åµÄÔ˶¯¹ý³Ì£¬Ã÷È·²»Í¬Ê±¶ÎÖØµþͼÐÎÐÎ×´µÄ±ä»¯Çé¿ö£®ÔÚ½âÌâ¼ÆËã¹ý³ÌÖУ¬³ýÀûÓÃÈý½Çº¯Êý½øÐмÆËãÍ⣬Ҳ¿ÉÒÔÀûÓÃÈý½ÇÐÎÏàËÆ£¬Êâ;ͬ¹é£®½âÌâʱעÒâ·ÖÀàÌÖÂÛ˼ÏëµÄÔËÓã®
| A£® | £¨-1£¬2£© | B£® | £¨-2£¬-1£© | C£® | £¨2£¬-1£© | D£® | £¨2£¬1£© |