ÌâÄ¿ÄÚÈÝ
7£®¸ù¾ÝÏÂÁÐÒªÇ󣬽â´ðÏà¹ØÎÊÌ⣨1£©Ç벹ȫÒÔÏÂÇó²»µÈʽ-2x2-4x¡Ý0µÄ½â¼¯µÄ¹ý³Ì
¢Ù¹¹Ô캯Êý£¬»³öͼÏ󣬸ù¾Ý²»µÈÊ½ÌØÕ÷¹¹Ôì¶þ´Îº¯Êýy=-2x2-4x£»²¢ÔÚÏÂÃæµÄ×ø±êϵÖУ¨¼ûͼ1£©»³ö¶þ´Îº¯Êýy=-2x2-4xµÄͼÏó£¨Ö»»³öͼÏó¼´¿É£©
¢ÚÇóµÃ½çµã£¬±êʾËùÐ裻µ±y=0ʱ£¬ÇóµÃ·½³Ì-2x2-4x=0µÄ½âΪx1=0£¬x2=-2£»²¢Óþâ³ÝÏß±êʾ³öº¯Êýy=-2x2-4xͼÏóÖÐy¡Ý0µÄ²¿·Ö£®
¢Û½èÖúͼÏó£¬Ð´³ö½â¼¯£»ÓÉËù±êʾͼÏ󣬿ɵò»µÈʽ-2x2-4x¡Ý0µÄ½â¼¯Îª-2¡Üx¡Ü0£®
£¨2£©ÀûÓã¨1£©ÖÐÇó²»µÈʽ½â¼¯µÄ²½Ö裬Çó²»µÈʽx2-2x+1£¼4µÄ½â¼¯
¢Ù¹¹Ô캯Êý£¬»³öͼÏó ¢ÚÇóµÃ½çµã£¬±êʾËùÐè ¢Û½èÖúͼÏó£¬Ð´³ö½â¼¯
£¨3£©²ÎÕÕÒÔÉÏÁ½¸öÇó²»µÈʽ½â¼¯µÄ¹ý³Ì£¬½èÖúÒ»Ôª¶þ´Î·½³ÌµÄÇó¸ù¹«Ê½£¬Ö±½Óд³ö¹ØÓÚxµÄ²»µÈʽax2+bx+c£¾0£¨a£¾0£©µÄ½â¼¯£®
·ÖÎö £¨1£©¸ù¾ÝÅ×ÎïÏßÓëxÖáµÄ½»µã×ø±ê£¬Å×ÎïÏߵĿª¿Ú·½ÏòÒÔ¼°Å×ÎïÏߵĶԳÆÖá×÷³öͼÏ󣬸ù¾ÝͼÏóд³ö²»µÈʽ-2x2-4x¡Ý0µÄ½â¼¯£»
£¨2£©²Î¿¼£¨1£©µÄ½âÌâ¹ý³Ì½øÐмÆË㣻
£¨3£©²Î¿¼£¨1£©µÄ½âÌâ¹ý³Ì½øÐмÆË㣮µ«ÊÇÐèÒª·ÖÀàÌÖÂÛ£º¡÷£¾0¡¢¡÷=0¡¢¡÷£¾0ÈýÖÖÇé¿ö£®
½â´ð ½â£º£¨1£©y=-2x2-4x=-2x£¨x+2£©£¬Ôò¸ÃÅ×ÎïÏßÓëxÖá½»µãµÄ×ø±ê·Ö±ðÊÇ£¨0£¬0£©£¬£¨-2£¬0£©£¬ÇÒÅ×ÎïÏß¿ª¿Ú·½ÏòÏòÏ£¬ËùÒÔÆä´óÖÂͼÏóÈçͼ£¨1£©Ëùʾ£º![]()
![]()
¸ù¾Ýͼʾ֪£¬²»µÈʽ-2x2-4x¡Ý0µÄ½â¼¯Îª-2¡Üx¡Ü0£®
¹Ê´ð°¸ÊÇ£ºx1=0£¬x2=-2£»-2¡Üx¡Ü0£»
£¨2£©¢Ù¹¹Ô캯Êýy=x2-2x+1£¬»³öͼÏó£¬Èçͼ£¨2£©Ëùʾ£»
¢Úµ±y=4ʱ£¬·½³Ìx2-2x+1=4µÄ½âΪx1=-1£¬x2=3£»
¢ÛÓÉͼ£¨2£©Öª£¬²»µÈʽx2-2x+1£¼4µÄ½â¼¯ÊÇ-1£¼x£¼3£»
£¨3£©¢Ùµ±b2-4ac£¾0ʱ£¬¹ØÓÚxµÄ²»µÈʽax2+bx+c£¾0£¨a£¾0£©µÄ½â¼¯ÊÇx£¾$\frac{-b+\sqrt{{b}^{2}-4ac}}{2a}$»òx£¼$\frac{-b-\sqrt{{b}^{2}-4ac}}{2a}$£®
µ±b2-4ac=0ʱ£¬¹ØÓÚxµÄ²»µÈʽax2+bx+c£¾0£¨a£¾0£©µÄ½â¼¯ÊÇx¡Ù-$\frac{b}{2a}$£»
µ±b2-4ac£¼0ʱ£¬¹ØÓÚxµÄ²»µÈʽax2+bx+c£¾0£¨a£¾0£©µÄ½â¼¯ÊÇÈ«ÌåʵÊý£®
µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýÓë²»µÈʽ£¨×飩£®ÊýÐνáºÏÊÇÊýѧÖеÄÖØÒªË¼ÏëÖ®Ò»£¬½â¾öº¯ÊýÎÊÌâ¸üÊÇÈç´Ë£¬Í¬Ñ§ÃÇÒªÒýÆðÖØÊÓ£®
| A£® | a=2012 | B£® | a£¼2012 | C£® | a£¾2012 | D£® | ÎÞ·¨È·¶¨ |
| A£® | £¨-1£¬$\sqrt{3}$£© | B£® | £¨-1£¬$\sqrt{3}$£©»ò£¨1£¬-$\sqrt{3}$£© | C£® | £¨-1£¬-$\sqrt{3}$£© | D£® | £¨-1£¬-$\sqrt{3}$£©»ò£¨-$\sqrt{3}$£¬-1£© |