题目内容
19.(1)如图1,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.(2)如图2,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD的长.
分析 (1)连接BE,证明△ACD≌△BCE,得到AD=BE,在Rt△BAE中,AB=6$\sqrt{2}$,AE=3,求出BE,得到答案;
(2)连接BE,证明△ACD∽△BCE,得到$\frac{AD}{BE}$=$\frac{AC}{BC}$=$\frac{\sqrt{3}}{3}$,求出BE的长,得到AD的长.
解答 解:(1)如图1,连接BE,![]()
∵∠ACB=∠DCE=90°,
∴∠ACB+∠ACE=∠DCE+∠ACE,即∠BCE=∠ACD,
又∵AC=BC,DC=EC,
在△ACD和△BCE中,
$\left\{\begin{array}{l}{AC=BC}\\{∠BCE=∠ACD}\\{DC=EC}\end{array}\right.$,
∴△ACD≌△BCE,
∴AD=BE,
∵AC=BC=6,
∴AB=6$\sqrt{2}$,
∵∠BAC=∠CAE=45°,
∴∠BAE=90°,
在Rt△BAE中,AB=6$\sqrt{2}$,AE=3,
∴BE=9,
∴AD=9;
(2)如图2,连接BE,
在Rt△ACB中,∠ABC=∠CED=30°,
tan30°=$\frac{AC}{BC}$=$\frac{\sqrt{3}}{3}$,
∵∠ACB=∠DCE=90°,
∴∠BCE=∠ACD,
∴△ACD∽△BCE,
∴$\frac{AD}{BE}$=$\frac{AC}{BC}$=$\frac{\sqrt{3}}{3}$,
∵∠BAC=60°,∠CAE=30°,
∴∠BAE=90°,又AB=6,AE=8,
∴BE=10,
∴AD=$\frac{10}{3}\sqrt{3}$.
点评 本题考查的是相似三角形的判定和性质、全等三角形的判定和性质,掌握性质定理和判定定理是解题的关键,正确作出辅助线是重点.
| A. | ①② | B. | ①④ | C. | ②③ | D. | ③④ |
| A. | AF=AE | B. | △ABE≌△AGF | C. | EF=2$\sqrt{5}$ | D. | AF=EF |
| A. | 甲、乙都可以 | B. | 甲、乙都不可以 | C. | 甲不可以、乙可以 | D. | 甲可以、乙不可以 |