题目内容
计算下列各题:
(1)
÷
-
;
(2)
-
•(
-x-y);
(3)(1+x)(
-
).
(1)
| x-1 |
| x2+x |
| x2-2x+1 |
| x2-1 |
| 1 |
| x |
(2)
| 1 |
| 2x |
| 1 |
| x+y |
| x+y |
| 2x |
(3)(1+x)(
| x-1 |
| x2+x |
| 1-x |
| x2-x |
考点:分式的混合运算
专题:
分析:(1)首先把除法转化为乘法,计算乘法,然后计算分式的减法即可;
(2)首先计算括号内的式子,然后计算分式的乘法,最后进行分式的减法计算即可;
(3)首先对括号内的分式进行化简,然后利用乘法计算,最后进行分式的加减计算即可.
(2)首先计算括号内的式子,然后计算分式的乘法,最后进行分式的减法计算即可;
(3)首先对括号内的分式进行化简,然后利用乘法计算,最后进行分式的加减计算即可.
解答:解:(1)原式=
÷
-
=
•
-
=
-
=0;
(2)原式=
-
•
=
-
•
=
-
=
=1;
(3)原式=(1+x)•【
+
】
=
+
=
=2.
| x-1 |
| x(x+1) |
| (x-1)2 |
| (x+1)(x-1) |
| 1 |
| x |
=
| x-1 |
| x(x+1) |
| (x+1)(x-1) |
| (x-1)2 |
| 1 |
| x |
=
| 1 |
| x |
| 1 |
| x |
=0;
(2)原式=
| 1 |
| 2x |
| 1 |
| x+y |
| x+y-2x(x+y) |
| 2x |
=
| 1 |
| 2x |
| 1 |
| x+y |
| (x+y)(1-2x) |
| 2x |
=
| 1 |
| 2x |
| 1-2x |
| 2x |
=
| 2x |
| 2x |
=1;
(3)原式=(1+x)•【
| x-1 |
| x(x+1) |
| x-1 |
| x(x-1) |
=
| x-1 |
| x |
| 1+x |
| x |
=
| 2x |
| x |
=2.
点评:本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.
练习册系列答案
相关题目