题目内容

从甲地到乙地的公路只有上坡路和下坡路,没有平路,一辆汽车上坡时每小时行驶20千米,下坡时每小时行驶35千米,车从甲地开往乙地需9小时,乙地开往甲地需7小时,问:甲、乙两地间路由多少千米?从甲地到乙地须行驶多少千米的上坡路?
考点:二元一次方程组的应用
专题:
分析:设从甲地到乙地的上坡路为x千米,下坡路为y千米,再根据上坡和下坡时的速度和从甲地开往乙地需的时间,从乙地到甲地需的时间,列出并解方程组即可.
解答:解:设从甲地到乙地的上坡路为x千米,下坡路为y千米,由题意得,
x
20
+
y
35
=9
x
35
+
y
20
=7

解这个方程组,得,
x=
4900
33
y=
1820
33

甲、乙两地间的公路的千米数:
4900
33
+
1820
33
=
2240
11
(千米),
从甲地到乙地上坡路的千米数:
4900
33
千米.
答:甲、乙两地间的公路有
2240
11
千米;从甲地到乙地须行驶
4900
33
千米的上坡路.
点评:此题考查用二元一次方程组解决实际问题,关键是根据题意找出等量关系式,列出并解方程组即可.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网