题目内容
8.(1)求证:△ABC是等边三角形;
(2)填空:
①PC、PB、PA之间的数量关系是CP=BP+AP;
②四边形APBC的最大面积为$\sqrt{3}$.
分析 (1)利用圆周角定理可得∠BAC=∠CPB,∠ABC=∠APC,而∠APC=∠CPB=60°,所以∠BAC=∠ABC=60°,证明△ABC是等边三角形;
(2)在PC上截取PD=AP,则△APD是等边三角形,然后证明△APB≌△ADC,证明BP=CD,即可证得;
(3)过点P作PE⊥AB,垂足为E,过点C作CF⊥AB,垂足为F,把四边形的面积转化为两个三角形的面积进行计算,当点P为$\widehat{AB}$的中点时,PE+CF=PC从而得出最大面积.
解答 (1)在⊙O中,∠BAC与∠CPB是$\widehat{BC}$所对的圆周角,∠ABC与∠APC是$\widehat{AC}$所对的圆周角,
∴∠BAC=∠CPB,∠ABC=∠APC,
∵∠APC=∠CPB=60°,
∴∠ABC=∠BAC=60°,
∴△ABC为等边三角形;
故答案为:等边三角形;
(2)①如图1,在PC上截取PD=AP,![]()
又∵∠APC=60°,
∴△APD是等边三角形,
∴AD=AP=PD,∠ADP=60°,即∠ADC=120°.
又∵∠APB=∠APC+∠BPC=120°,
∴∠ADC=∠APB,
在△APB和△ADC中,
$\left\{\begin{array}{l}{∠ABP=∠ACD}\\{∠APB=∠ADC}\\{AP=AD}\end{array}\right.$,
∴△APB≌△ADC(AAS),
∴BP=CD,
又∵PD=AP,
∴CP=BP+AP,
故答案为:CP=BP+AP;
②当点P为$\widehat{AB}$的中点时,四边形APBC的面积最大.
理由如下,如图2,过点P作PE⊥AB,垂足为E.![]()
过点C作CF⊥AB,垂足为F.
∵S△APB=$\frac{1}{2}$AB•PE,S△ABC=$\frac{1}{2}$AB•CF,
∴S四边形APBC=$\frac{1}{2}$AB•(PE+CF),
当点P为$\widehat{AB}$的中点时,PE+CF=PC,PC为⊙O的直径
∴此时四边形APBC的面积最大.
又∵⊙O的半径为1,
∴其内接正三角形的边长AB=$\sqrt{3}$,
∴S四边形APBC=$\frac{1}{2}$×2×$\sqrt{3}$=$\sqrt{3}$.,
故答案为:$\sqrt{3}$.
点评 本题考查了圆周角定理、等边三角形的判定、三角形的面积公式以及三角形的全等的判定与性质,正确作出辅助线,证明△APB≌△ADC是关键.
四种气质类型人数频数分布表
| 气质类型 | 频数 | 频率 |
| 胆汁型 | 180 | a |
| 多血质 | 140 | 0.28 |
| 黏液质 | 80 | 0.16 |
| 抑郁质 | b | 0.20 |
(1)a=0.36,b=100
(2)请你估计一下,高三年级1200名学生中,胆汁型和多血质的共有多少人?