题目内容
1.已知实数x、y满足x2-$\sqrt{2}$xy-4y2=0,求$\frac{{x}^{2}-\sqrt{2}xy+{y}^{2}}{{x}^{2}+\sqrt{2}xy+{y}^{2}}$的值.分析 首先将原式分解因式,进而得出x,y的关系,进而化简求出答案.
解答 解:∵x2-$\sqrt{2}$xy-4y2=0,
∴(x-2$\sqrt{2}$y)(x+$\sqrt{2}$y)=0,
∴x=2$\sqrt{2}$y,x=-$\sqrt{2}$y,
故当x=2$\sqrt{2}$y时,$\frac{{x}^{2}-\sqrt{2}xy+{y}^{2}}{{x}^{2}+\sqrt{2}xy+{y}^{2}}$=$\frac{4{y}^{2}+{y}^{2}}{(2\sqrt{2}y)^{2}+\sqrt{2}•2\sqrt{2}{y}^{2}+{y}^{2}}$=$\frac{5}{13}$,
当x=-$\sqrt{2}$y时,$\frac{{x}^{2}-\sqrt{2}xy+{y}^{2}}{{x}^{2}+\sqrt{2}xy+{y}^{2}}$=$\frac{5{y}^{2}}{(-\sqrt{2}y)^{2}+\sqrt{2}×(-\sqrt{2}y)•{y}^{2}+{y}^{2}}$=5.
点评 此题主要考查了二次根式的化简求值,正确得出x,y的关系是解题关键.
练习册系列答案
相关题目