题目内容

16.如图,在四边形ABCD中,对角线 AC⊥BD,垂足为O,点E、F、G、H分别为边AD、AB、BC、CD的中点.若AC=10,BD=6,则四边形EFGH的面积为(  )
A.60B.30C.15D.20

分析 有一个角是直角的平行四边形是矩形.利用中位线定理可得出四边形EFGH矩形,根据矩形的面积公式解答即可.

解答 解:∵点E、F分别为四边形ABCD的边AD、AB的中点,
∴EF∥BD,且EF=$\frac{1}{2}$BD=3.
同理求得EH∥AC∥GF,且EH=GF=$\frac{1}{2}$AC=5,
又∵AC⊥BD,
∴EF∥GH,FG∥HE且EF⊥FG.
四边形EFGH是矩形.
∴四边形EFGH的面积=EF•EH=3×5=15,即四边形EFGH的面积是15.
故选:C.

点评 本题考查的是中点四边形.解题时,利用了矩形的判定以及矩形的定理,矩形的判定定理有:
(1)有一个角是直角的平行四边形是矩形;
(2)有三个角是直角的四边形是矩形;
(3)对角线互相平分且相等的四边形是矩形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网