ÌâÄ¿ÄÚÈÝ

11£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Ö±Ïßx=-$\sqrt{3}x$+4$\sqrt{3}$·Ö±ð½»xÖᣬyÖáÓÚµãA¡¢B£¬CΪABµÄÖе㣬¶¯µãD´ÓÔ­µãO³ö·¢£¬ÒÔÿÃë1¸öµ¥Î»µÄËÙ¶ÈÏòÖÕµãAÔ˶¯£¬¹ýµãD×÷OAµÄ´¹Ïߣ¬·Ö±ð½»Ö±ÏßAB£¬OCÓÚµãP£¬Q£¬ÒÔPQΪһ±ßÏò×ó²à×÷ÕýÈý½ÇÐÎEPQ£¬ÈçͼËùʾ£¬ÉèµãDµÄÔ˶¯Ê±¼äΪt£¨Ã룩£¬¡÷EPQºÍ¡÷OBCÖØµþ²¿·ÖµÄÃæ»ýΪS£¨Æ½·½µ¥Î»£©£®
£¨1£©ÇóµãCµÄ×ø±ê£»
£¨2£©ÈôµãEÇ¡ºÃÔÚyÖáÉÏ£¬ÇótµÄÖµ£»
£¨3£©µ±0£¼t£¼2ʱ£¬ÇóS¹ØÓÚtµÄº¯Êý¹ØÏµÊ½£¬²¢ÇóSµÄ×î´óÖµ£®

·ÖÎö £¨1£©Çó³öÖ±Ïßy=-$\sqrt{3}x$+4$\sqrt{3}$ÓëÁ½×ø±êÖáµÄ½»µã×ø±ê£¬¸ù¾ÝCΪABµÄÖе㣬Çó³öµãCµÄ×ø±ê£»
£¨2£©¸ù¾ÝµÈ±ßÈý½ÇÐαßÓë¸ßµÄ¹ØÏµÁгöËãʽ£¬Çó³öt£»
£¨3£©¸ù¾ÝS=¡÷EPQµÄÃæ»ý-¡÷EFHµÄÃæ»ý£¬ÓÃt±íʾ³öS£¬Çó³ö×î´óÖµ¼´¿É£®

½â´ð ½â£º£¨1£©Ö±Ïßy=-$\sqrt{3}x$+4$\sqrt{3}$£¬
µ±y=0ʱ£¬x=4£¬A£¨4£¬0£©£¬
x=0ʱ£¬y=4$\sqrt{3}$£¬B£¨0£¬4$\sqrt{3}$£©£¬
¡ßCΪABµÄÖе㣬
¡àµãCµÄ×ø±êΪ£º£¨2£¬2$\sqrt{3}$£©
£¨2£©tÃëºó£¬PµãµÄ×Ý×ø±êΪ-$\sqrt{3}$t+4$\sqrt{3}$£¬
Ö±ÏßOCµÄ½âÎöʽΪy=$\sqrt{3}$x£¬
¡àtÃëºó£¬QµãµÄ×Ý×ø±êΪ$\sqrt{3}$t£¬
PQ=-$\sqrt{3}$t+4$\sqrt{3}$-$\sqrt{3}$t=-2$\sqrt{3}$t+4$\sqrt{3}$£¬
µãEÔÚyÖáÉÏʱ£¬-2$\sqrt{3}$t+4$\sqrt{3}$=$\frac{2}{3}\sqrt{3}$t£¬
t=$\frac{3}{2}$£»
£¨3£©¡ß¡÷EPQÊǵȱßÈý½ÇÐΣ¬PQ=-2$\sqrt{3}$t+4$\sqrt{3}$£¬
S¡÷EPQ=$\frac{1}{2}$¡Á$\frac{\sqrt{3}}{2}$£¨-2$\sqrt{3}$t+4$\sqrt{3}$£©2=3$\sqrt{3}$t2-12$\sqrt{3}$t+12$\sqrt{3}$£¬
¡÷EFHµÄ±ßFHÉϵĸßΪ$\frac{\sqrt{3}}{2}$£¨-2$\sqrt{3}$t+4$\sqrt{3}$£©-t=-4t+6£¬
S¡÷EFH=$\frac{1}{2}$¡Á$\frac{2}{3}\sqrt{3}$£¨-4t+6£©2=$\frac{16}{3}$$\sqrt{3}$t2-16$\sqrt{3}$t+12$\sqrt{3}$£¬
S=S¡÷EPQ-S¡÷EFH
=£¨3$\sqrt{3}$t2-12$\sqrt{3}$t+12$\sqrt{3}$£©-£¨$\frac{16}{3}$$\sqrt{3}$t2-16$\sqrt{3}$t+12$\sqrt{3}$£©
=-$\frac{7}{3}$$\sqrt{3}$t2+4$\sqrt{3}$t£¨0£¼t£¼2£©£¬
¡ß-$\frac{7}{3}$$\sqrt{3}$£¼0£¬º¯ÊýµÄ×î´óֵΪ$\frac{12\sqrt{3}}{7}$£®

µãÆÀ ±¾Ì⿼²éµÄÊÇÒ»´Îº¯ÊýµÄ×ÛºÏÓ¦Óú͵ȱßÈý½ÇÐεÄÐÔÖÊ£¬¸ù¾ÝÌâÒâºÍͼÐÎÁгöº¯Êý¹ØÏµÊ½ÊǽâÌâµÄ¹Ø¼ü£¬½â´ðʱ£¬×¢ÒâµÈ±ßÈý½ÇÐεÄÃæ»ýµÄ±íʾ·½·¨µÄÁé»îÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø