已知a+b=-4,ab=2,求多项式4a2b+4ab2-4a-4b的值。

-16 【解析】 试题分析:先根据分组分解法分解多项式4a2b+4ab2-4a-4b,再整体代入求值即可得到结果. 当a+b=-4,ab=2时, 4a2b+4ab2-4a-4b=4ab(a+b)-4(a+b)=4(a+b)(ab-1)=-16.

已知抛物线

(1)用配方法求它的顶点坐标、对称轴;

(2)x取何值时,y随x增大而减小?

(3)x取何值时,抛物线在x轴上方?

(1)顶点坐标为(-1, ),对称轴为:x= -1;(2)x﹥-1时,随增大而减小 ;(3)-4﹤x﹤2时,抛物线在x轴上方. 【解析】试题分析:(1)用配方法时,先提二次项系数,再配方,写成顶点式,根据顶点式的坐标特点求顶点坐标及对称轴; (2)对称轴是x=-1,开口向下,根据对称轴及开口方向确定函数的增减性; (3)令y=0,确定函数图象与x轴的交点,结合开口方向判断x的取值...

如图是二次函数y=ax2+bx+c的图象,下列结论: ①二次三项式ax2+bx+c的最大值为4;

②4a+2b+c<0;

③一元二次方程ax2+bx+c=1的两根之和为﹣1;

④使y≤3成立的x的取值范围是x≥0.

其中正确的个数有(   )

A. 1个 B. 2个 C. 3个 D. 4个

B 【解析】试题解析:∵抛物线的顶点坐标为(-1,4),∴二次三项式ax2+bx+c的最大值为4,①正确; ∵x=2时,y<0,∴4a+2b+c<0,②正确; 根据抛物线的对称性可知,一元二次方程ax2+bx+c=1的两根之和为-2,③错误; 使y≤3成立的x的取值范围是x≥0或x≤-2,④错误, 故选B.

抛物线y=ax2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表:

x

-2

-1

0

1

2

y

0

4

6

6

4

从上表可知,下列说法中正确的是___________ (填写序号).

①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是x=0.5;④在对称轴左侧,y随x的增大而增大.

①③④ 【解析】根据图表,当x=-2,y=0,根据抛物线的对称性,当x=3时,y=0,即抛物线与x轴的交点为(-2,0)和(3,0); ∴抛物线的对称轴是直线x=3-, 根据表中数据得到抛物线的开口向下, ∴当x=时,函数有最大值,而不是x=0,或1对应的函数值6, 并且在直线x=的左侧,y随x增大而增大. 所以①③④正确,②错. 故答案为:①③④.

如果函数与函数的顶点相同,且其中一个函数经过点(2,7),求这两个函数的解析式.

, 【解析】分析:先求出函数与函数的顶点,然后根据题意求得b、c的值;再由已知条件“其中一个函数经过点(2,7)”,利用待定系数法求得函数的解析式. 本题解析:∵函数的顶点是(1,c), 函数的顶点是(-b,-5), ∴1=-b,即b=-1,c=-5; ∴函数的解析式为: ; 又∵其中一个函数经过点(2,7), ∴函数经过点(2,7), ∴,解得,a...

已知抛物线与x轴的交点为(,0)和(-2,0),则因式分解的结果是__________

【解析】∵抛物线与x轴的交点为(,0)和(-2,0),a=5, ∴抛物线的解析式用交点式表示为 ∴= 即: =. 故答案为: .

一列火车从车站开出,预计行程为450千米,当它出发3小时后,因特殊情况而多 停一站,因此耽误30分钟,后来把速度提高了20%,结果准时到达目的地,求这列火车原来的速度.

75千米/时. 【解析】试题分析:设这列火车原来的速度为每小时x千米,则提速后速度为每小时(1+20%)x千米,根据题意可得等量关系:按原速度行驶(450-x)千米所用时间=提速后行驶(450-x)千米所用时间+,列出方程,求解即可. 试题解析:设这列火车原来的速度为x千米/时,根据题意, 得+, 解得x=75, 经检验x=75是原方程的解, 所以,这列火车原来...

如图,一艘海轮位于灯塔P的北偏东53°方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处.

(1)在图中画出点B,并求出B处与灯塔P的距离(结果取整数);

(2)用方向和距离描述灯塔P相对于B处的位置.

(参考数据:sin 53°≈0.80,cos 53°≈0.60,tan53°≈1.33, ≈1.41)

(1)点B的位置见解析,PB≈113海里; (2)灯塔P位于B处的西北(或北偏西45°)方向,距离B处大约113海里. 【解析】试题分析:(1)先在图中画出点B,作PC⊥AB于C,先解Rt△PAC,得出PC=PA•sin∠PAC=80,再解Rt△PBC,得出PB=PC=1.41×80≈113; (2)由∠CBP=45°,PB≈113海里,即可得到灯塔P位于B处北偏西45°方向,且...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网