题目内容
如果抛物线y=x2-6x+c-2的顶点到x轴的距离是3,那么c的值等于( )
A. 8
B. 14
C. 8或14
D. -8或-14
已知a+b=-4,ab=2,求多项式4a2b+4ab2-4a-4b的值。
已知抛物线
.
(1)用配方法求它的顶点坐标、对称轴;
(2)x取何值时,y随x增大而减小?
(3)x取何值时,抛物线在x轴上方?
如图是二次函数y=ax2+bx+c的图象,下列结论: ①二次三项式ax2+bx+c的最大值为4;
②4a+2b+c<0;
③一元二次方程ax2+bx+c=1的两根之和为﹣1;
④使y≤3成立的x的取值范围是x≥0.
其中正确的个数有( )
![]()
A. 1个 B. 2个 C. 3个 D. 4个
抛物线y=ax2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表:
x | … | -2 | -1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
从上表可知,下列说法中正确的是___________ (填写序号).
①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是x=0.5;④在对称轴左侧,y随x的增大而增大.
如果函数
与函数
的顶点相同,且其中一个函数经过点(2,7),求这两个函数的解析式.
已知抛物线
与x轴的交点为(
,0)和(-2,0),则因式分解
的结果是__________
一列火车从车站开出,预计行程为450千米,当它出发3小时后,因特殊情况而多 停一站,因此耽误30分钟,后来把速度提高了20%,结果准时到达目的地,求这列火车原来的速度.
如图,一艘海轮位于灯塔P的北偏东53°方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处.
![]()
(1)在图中画出点B,并求出B处与灯塔P的距离(结果取整数);
(2)用方向和距离描述灯塔P相对于B处的位置.
(参考数据:sin 53°≈0.80,cos 53°≈0.60,tan53°≈1.33,
≈1.41)