题目内容
12.| A. | 2$\sqrt{3}$ | B. | 3$\sqrt{3}$ | C. | 4$\sqrt{3}$ | D. | 4 |
分析 先根据△AOB和△ACD均为正三角形可知∠AOB=∠CAD=60°,故可得出AD∥OB,所以S△ABP=S△AOP,故S△OBP=S△AOB,过点B作BE⊥OA于点E,由反比例函数系数k的几何意义即可得出结论.
解答
解:∵△AOB和△ACD均为正三角形,
∴∠AOB=∠CAD=60°,
∴AD∥OB,
∴S△ABP=S△AOP,
∴S△OBP=S△AOB,
过点B作BE⊥OA于点E,则S△OBE=S△ABE=$\frac{1}{2}$S△AOB,
∵点B在反比例函数y=$\frac{4}{x}$(x>0)的图象上,
∴S△OBE=$\frac{1}{2}$×4=2,
∴S△OBP=S△AOB=2S△OBE=4.
故选D.
点评 本题考查的是反比例函数综合题,涉及到等边三角形的性质及反比例函数系数k的几何意义等知识,难度适中.
练习册系列答案
相关题目
17.在下列方程中,是一元二次方程的是( )
| A. | x2+3x=$\frac{2}{x}$ | B. | 2(x-1)+x=2 | C. | x2=2+3x | D. | x2-x3+4=0 |