题目内容
考点:直角梯形
专题:
分析:利用直角梯形的性质结合勾股定理得出DC的长.
解答:
解:过点D作DE⊥BC于点E,
∵AD∥BC,AB⊥BC,AD=2,AB=3,BC=4,
∴AD=BE=2,DE=AB=3,则EC=2,
∴DC=
=
=
.
故答案为:
.
∵AD∥BC,AB⊥BC,AD=2,AB=3,BC=4,
∴AD=BE=2,DE=AB=3,则EC=2,
∴DC=
| DE2+EC2 |
| 32+22 |
| 13 |
故答案为:
| 13 |
点评:此题主要考查了直角梯形以及勾股定理等知识,正确利用勾股定理得出是解题关键.
练习册系列答案
相关题目