题目内容

15.已知点A(-3,-4)和B(-2,1),试在y轴求一点P,使PA与PB的和最小.

分析 求出A点关于y轴的对称点C,连接BC,交y轴于点P,则P即为所求点,用待定系数法求出过BC两点的直线解析式,求出此解析式与y轴的交点坐标即可.

解答 解:A关于y轴的对称点是C(3,-4)则PA=PC,B,C在y轴两侧 则当BPC共线时,PB+PC最小,即PA+PB最小,
设直线BC是y=kx+b,把B,C两点坐标代入:
$\left\{\begin{array}{l}{1=-2k+b}\\{-4=3k+b}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=-1}\\{b=-1}\end{array}\right.$
所以y=-x-1
y轴上x=0,则y=0-1=-1,
所以 P(0,-1).

点评 本题考查的是最短线路问题及用待定系数法求一次函数的解析式,熟知轴对称的性质及一次函数的相关知识是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网