题目内容
2.解方程:2y-[y-3(y-1)]=5.分析 方程去括号,移项合并,把y系数化为1,即可求出解.
解答 解:去括号得:2y-y+3y-3=5,
移项合并得:4y=8,
解得:y=2.
点评 此题考查了解一元一次方程,解方程时注意括号外边是负号,去括号注意要变号.
练习册系列答案
相关题目
12.分式方程$\frac{x}{x+2}$=$\frac{1}{2}$的解是( )
| A. | x=1 | B. | x=-1 | C. | x=2 | D. | x=-2 |
13.阅读下列材料:
某种型号的温控水箱的工作过程是:接通电源后,在初始温度20℃下加热水箱中的水;当水温达到设定温度80℃时,加热停止;此后水箱中的水温开始逐渐下降,当下降到20℃时,再次自动加热水箱中的水至80℃时,加热停止;当水箱中的水温下降到20℃时,再次自动加热,…,按照以上方式不断循环.
小明根据学习函数的经验,对该型号温控水箱中的水温随时间变化的规律进行了探究.发现水温y是时间x的函数,其中y(单位:℃)表示水箱中水的温度.x(单位:min)表示接通电源后的时间.
下面是小明的探究过程,请补充完整:
(1)下表记录了32min内14个时间点的温控水箱中水的温度y随时间x的变化情况
m的值为50;
(2)①当0≤x≤4时,写出一个符合表中数据的函数解析式y=15x+20;
当4<x≤16时,写出一个符合表中数据的函数解析式$\frac{320}{x}$;
②如图,在平面直角坐标系xOy中,描出了上表中部分数据对应的点,根据描出的点,画出当0≤x≤32时,温度y随时间x变化的函数图象:
(3)如果水温y随时间x的变化规律不变,预测水温第8次达到40℃时,距离接通电源56min.
某种型号的温控水箱的工作过程是:接通电源后,在初始温度20℃下加热水箱中的水;当水温达到设定温度80℃时,加热停止;此后水箱中的水温开始逐渐下降,当下降到20℃时,再次自动加热水箱中的水至80℃时,加热停止;当水箱中的水温下降到20℃时,再次自动加热,…,按照以上方式不断循环.
小明根据学习函数的经验,对该型号温控水箱中的水温随时间变化的规律进行了探究.发现水温y是时间x的函数,其中y(单位:℃)表示水箱中水的温度.x(单位:min)表示接通电源后的时间.
下面是小明的探究过程,请补充完整:
(1)下表记录了32min内14个时间点的温控水箱中水的温度y随时间x的变化情况
| 接通电源后的时间x (单位:min) | 0 | 1 | 2 | 3 | 4 | 5 | 8 | 10 | 16 | 18 | 20 | 21 | 24 | 32 | … |
| 水箱中水的温度y (单位:℃) | 20 | 35 | 50 | 65 | 80 | 64 | 40 | 32 | 20 | m | 80 | 64 | 40 | 20 | … |
(2)①当0≤x≤4时,写出一个符合表中数据的函数解析式y=15x+20;
当4<x≤16时,写出一个符合表中数据的函数解析式$\frac{320}{x}$;
②如图,在平面直角坐标系xOy中,描出了上表中部分数据对应的点,根据描出的点,画出当0≤x≤32时,温度y随时间x变化的函数图象:
(3)如果水温y随时间x的变化规律不变,预测水温第8次达到40℃时,距离接通电源56min.
17.若关于x的分式方程$\frac{x}{x-3}$=2-$\frac{m}{3-x}$有增根,则m的值为( )
| A. | -3 | B. | 2 | C. | 3 | D. | 不存在 |
7.下列计算正确的是( )
| A. | a3+a2=a5 | B. | (-a3b2)2=a6b4 | C. | 2x2÷2x2=0 | D. | (-$\frac{1}{2}$)-3=8 |
12.在同一平面内,AB⊥l,BC⊥l,B为垂足,那么A、B、C三点在同一条直线上.判断这个命题为真命题的理由是( )
| A. | 两点确定一条直线 | |
| B. | 经过直线外一点,有且只有一条直线与这条直线平行 | |
| C. | 垂线段最短 | |
| D. | 同一平面内,过一点有且只有一条直线与已知直线垂直 |