题目内容

7.三元一次方程组$\left\{\begin{array}{l}{2x-3y+2z=5}\\{x-2y+3z=-6}\\{3x-y+z=3}\end{array}\right.$  消去未知数y后,得到的方程组可能是(  )
A.$\left\{\begin{array}{l}{7x+z=4}\\{5x-z=12}\end{array}\right.$B.$\left\{\begin{array}{l}{7x+z=4}\\{x-5z=8}\end{array}\right.$
C.$\left\{\begin{array}{l}{7x-z=12}\\{x-5z=28}\\{\;}\end{array}\right.$D.$\left\{\begin{array}{l}{7x-z=4}\\{x-5z=12}\end{array}\right.$

分析 利用加减消元法解出方程组即可.

解答 解:$\left\{\begin{array}{l}{2x-3y+2z=5①}\\{x-2y+3z=-6②}\\{3x-y+z=3③}\end{array}\right.$,
③×3-①得,7x+z=4④,
③×2-②得,5x-z=12⑤,
由④⑤组成方程组得,$\left\{\begin{array}{l}{7x+z=4}\\{5x-z=12}\end{array}\right.$,
故选:A.

点评 本题考查的是二元一次方程组、三元一次方程组的解法,掌握加减消元法是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网