题目内容

如图,△ABC中,∠A=40°∠B=76°,CE平分∠ACB,CD⊥AB于点D,DF⊥CE于点F,求∠CDF的度数.
考点:三角形内角和定理
专题:
分析:首先根据三角形的内角和定理求得∠ACB的度数,再根据CE平分∠ACB求得∠ACE的度数,则根据三角形的外角的性质就可求得∠CED=∠A+∠ACE,再结合CD⊥AB,DF⊥CE就可求解.
解答:解:∵∠A=40°,∠B=76°,
∴∠ACB=180°-40°-76°=64°,
∵CE平分∠ACB,
∴∠ACE=∠BCE=32°,
∴∠CED=∠A+∠ACE=72°,
∴∠CDE=90°,DF⊥CE,
∴∠CDF+∠ECD=∠ECD+∠CED=90°,
∴∠CDF=72°.
点评:此题主要考查了三角形的内角和定理、三角形的外角的性质以及角平分线定义和垂直定义,熟知三角形内角和是180°是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网