题目内容

20.如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5,OA与⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C.若在⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,则⊙O的半径的最小值为(  )
A.$\frac{5}{2}$B.2C.$\sqrt{5}$D.$\frac{5\sqrt{3}}{3}$

分析 首先证明AB=AC,再根据已知得出Q在AC的垂直平分线上,作出线段AC的垂直平分线MN,作OE⊥MN,求出OE<r,求出r范围,则可得到⊙O的半径的最小值.

解答 解:连接OB.如图1,
∵AB切⊙O于B,OA⊥AC,
∴∠OBA=∠OAC=90°,
∴∠OBP+∠ABP=90°,∠ACP+∠APC=90°,
∵OP=OB,
∴∠OBP=∠OPB,
∵∠OPB=∠APC,
∴∠ACP=∠ABC,
∴AB=AC,
作出线段AC的垂直平分线MN,作OE⊥MN,如图2,
∴OE=$\frac{1}{2}$AC=$\frac{1}{2}$AB=$\frac{1}{2}$$\sqrt{{5}^{2}-{r}^{2}}$,
又∵圆O与直线MN有交点,
∴OE=$\frac{1}{2}$$\sqrt{{5}^{2}-{r}^{2}}$≤r,
∴$\sqrt{{5}^{2}-{r}^{2}}$≤2r,
即:25-r2≤4r2
∴r2≥5,
∴r≥$\sqrt{5}$,
故选C.

点评 本题考查了等腰三角形的性质和判定,相似三角形的性质和判定,切线的性质,勾股定理,直线与圆的位置关系等知识点的应用,主要培养学生运用性质进行推理和计算的能力.本题综合性比较强,有一定的难度.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网