题目内容
求证:△EBC≌△FDA.
考点:平行四边形的性质,全等三角形的判定
专题:证明题
分析:根据平行三边的性质可知:AD=BC,由平行四边形的判定方法易证四边形BMDK和四边形AJCN是平行四边形,所以得∠FAD=∠ECB,∠ADF=∠EBC,进而证明:△EBC≌△FDA.
解答:
证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∵AF∥CE,BE∥DF,
∴四边形BMDK和四边形AJCN是平行四边形,
∴∠FAD=∠ECB,∠ADF=∠EBC,
在△EBC和△FDA中,
∴△EBC≌△FDA(ASA).
∴AD=BC,AD∥BC,
∵AF∥CE,BE∥DF,
∴四边形BMDK和四边形AJCN是平行四边形,
∴∠FAD=∠ECB,∠ADF=∠EBC,
在△EBC和△FDA中,
|
∴△EBC≌△FDA(ASA).
点评:本题考查了平行四边形的判定以及全等三角形的判定,在全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.
练习册系列答案
相关题目