题目内容
16.在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,b′),给出下列定义:若b′=$\left\{\begin{array}{l}{b,}&{a≥1}\\{-b,}&{a<1}\end{array}\right.$,则称点Q为点的限变点.例如:点(2,3)的限变点的坐标是(2,3),点(-2,5)的限变点的坐标是(-2,-5),如果一个点的限变点的坐标是($\sqrt{3}$,-1),那么这个点的坐标是( )| A. | (-1,$\sqrt{3}$) | B. | (-$\sqrt{3}$,-1) | C. | ($\sqrt{3}$,-1) | D. | ($\sqrt{3}$,1) |
分析 根据新定义的叙述可知:这个点和限变点的横坐标不变,当横坐标a≥1时,这个点和限变点的纵坐标不变;当横坐标a<1时,纵坐标是互为相反数;据此可做出判断.
解答 解:∵$\sqrt{3}$>1
∴这个点的坐标为($\sqrt{3}$,-1)
故选C.
点评 本题考查了点的坐标和对新定义的阅读理解,准确找出这个点与限变点的横、纵坐标与a的关系即可.
练习册系列答案
相关题目
4.以下各组数为三角形的三条边长,其中能作成直角三角形的是( )
| A. | 2,$\sqrt{2}$,4 | B. | 4,5,6 | C. | 2,3,4 | D. | 1,$\sqrt{2}$,$\sqrt{3}$ |
8.若不等式组$\left\{\begin{array}{l}{5x+2≤3x-5}\\{-x+5<a}\end{array}\right.$无解,则a的取值范围是( )
| A. | a$≤\frac{17}{2}$ | B. | a≤12 | C. | a<$\frac{17}{2}$ | D. | a<12 |
6.“六•一”儿童节前夕,某超市用3000元购进A、B两种童装共120件,其中A种童装每件24元,B种童装每件30元.若设购买A种童装x件,B种童装y件,依题意列方程组正确的是( )
| A. | $\left\{\begin{array}{l}{x+y=120}\\{24x+30y=3000}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x+y=120}\\{30x+24y=300}\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}{30x+24y=120}\\{x+y=3000}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{24x+30y=120}\\{x+y=3000}\end{array}\right.$ |