题目内容
11.解方程:(1)$\left\{\begin{array}{l}4x-y=-2\\-2x+y=0.\end{array}\right.$
(2)$\left\{\begin{array}{l}{\frac{x}{2}-\frac{y+1}{3}=1}\\{3x+2y=10}\end{array}\right.$.
分析 (1)方程组利用加减消元法求出解即可;
(2)方程组整理后,利用加减消元法求出解即可.
解答 解:(1)$\left\{\begin{array}{l}{4x-y=-2①}\\{-2x+y=0②}\end{array}\right.$,
①+②得:2x=-2,即x=-1,
把x=-1代入①得:y=-2,
则方程组的解为$\left\{\begin{array}{l}{x=-1}\\{y=-2}\end{array}\right.$;
(2)方程组整理得:$\left\{\begin{array}{l}{3x-2y=8①}\\{3x+2y=10②}\end{array}\right.$,
①+②得:6x=18,即x=3,
把x=3代入①得:y=$\frac{1}{2}$,
则方程组的解为$\left\{\begin{array}{l}{x=3}\\{y=\frac{1}{2}}\end{array}\right.$.
点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
练习册系列答案
相关题目
16.在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,b′),给出下列定义:若b′=$\left\{\begin{array}{l}{b,}&{a≥1}\\{-b,}&{a<1}\end{array}\right.$,则称点Q为点的限变点.例如:点(2,3)的限变点的坐标是(2,3),点(-2,5)的限变点的坐标是(-2,-5),如果一个点的限变点的坐标是($\sqrt{3}$,-1),那么这个点的坐标是( )
| A. | (-1,$\sqrt{3}$) | B. | (-$\sqrt{3}$,-1) | C. | ($\sqrt{3}$,-1) | D. | ($\sqrt{3}$,1) |
3.下列四个图形中,是中心对称而不是轴对称的是( )
| A. | B. | C. | D. |
20.如果a2n-1•an+2=a7,则n的值是( )
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |