题目内容

7.在我国古算书《周髀算经》中记载周公与商高的谈话,其中就有勾股定理的最早文字记录,即“勾三股四弦五”,亦被称作商高定理.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,则D,E,F,G,H,I都在矩形KLMJ的边上,那么矩形KLMJ的面积为110.

分析 延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解.

解答 解:如图,延长AB交KF于点O,延长AC交GM于点P,
则四边形OALP是矩形.
∵∠CBF=90°,
∴∠ABC+∠OBF=90°,
又∵直角△ABC中,∠ABC+∠ACB=90°,
∴∠OBF=∠ACB,
在△OBF和△ACB中,$\left\{\begin{array}{l}{∠BAC=∠BOF}&{\;}\\{∠ACB=∠OBF}&{\;}\\{BC=BF}&{\;}\end{array}\right.$
∴△OBF≌△ACB(AAS),
∴AC=OB,
同理:△ACB≌△PGC,
∴PC=AB,
∴OA=AP,
∴矩形AOLP是正方形,
边长AO=AB+AC=3+4=7,
∴KL=3+7=10,LM=4+7=11,
∴矩形KLMJ的面积为10×11=110.

点评 本题考查了勾股定理的证明,作出辅助线构造出正方形是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网