题目内容
7.(1)∠BPA的度数;
(2)PQ的最大值.
分析 (1)设∠BCE=∠ACD=α,可得∠CBE=∠CEB=∠CAD=∠CDA=90°-$\frac{1}{2}$α,根据四边形内角和可得∠BPA=90°;
(2)取AB的中点K,连接PK、QK,则KQ=$\frac{1}{2}$AC=4,PK=AB=5,继而可得PQ≤KP+KQ=9.
解答
解:(1)∵△DEC是由△ABC绕C点旋转得到,
∴CE=CB,CD=CA,∠BCE=∠ACD,
设∠BCE=∠ACD=α∴∠CBE=∠CEB=∠CAD=∠CDA=90°-$\frac{1}{2}$α,
∴在四边形BCDP中,∠BPA=360°-90°-α-2(90°-$\frac{1}{2}$α)=90°;
(2)∵在RT△ABC中,∠ACB=90°,BC=6,AC=8,
∴AB=10,
如图,取AB的中点K,连接PK、QK,
则KQ=$\frac{1}{2}$AC=4,PK=AB=5,
∴PQ≤KP+KQ=9,
∴PQ的最大值是9.
点评 本题主要考查旋转的性质、直角三角形的性质及勾股定理、中位线定理,构建以PQ为边的三角形,根据三角形三边关系得出PQ的长度范围是解题的关键.
练习册系列答案
相关题目
19.下列运算错误的是( )
| A. | -|-2|=2 | B. | (6.4×106)÷(8×103)=800 | ||
| C. | (-1)2015-12016=-2 | D. | $-6÷({\frac{1}{3}-\frac{1}{2}})=36$ |
17.
如图,l1∥l2,∠1=54°,则∠2的度数为( )
| A. | 36° | B. | 54° | C. | 126° | D. | 144° |