题目内容
17.如图,正方形网格中的两个小正方形的边长都是1,每个小正方形的顶点叫格点,一个顶点为格点的三角形称为格点三角形:(1)如图①,已知格点△ABC,则△ABC不是(是或不是)直角三角形:
(2)画一个格点△DEF,使其为钝角三角形,且面积为4.
分析 (1)根据AB=$\sqrt{10}$,BC=$\sqrt{5}$,AC=$\sqrt{13}$,可得AB2+BC2≠AC2,即可得出△ABC不是直角三角形;
(2)根据△DEF为钝角三角形,且面积为4进行作图即可.
解答 解:(1)如图1,∵AB=$\sqrt{10}$,BC=$\sqrt{5}$,AC=$\sqrt{13}$,
∴AB2+BC2≠AC2,
∴△ABC不是直角三角形;![]()
故答案为:不是;
(2)如图2,△DEF中∠DEF>90°,△DEF的面积=$\frac{1}{2}$×2×4=4.![]()
∴△DEF即为所求.
点评 本题主要考查了复杂作图以及三角形面积的计算,解决问题的关键是掌握勾股定理的逆定理.如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
练习册系列答案
相关题目
12.以下选项中比$|-\frac{1}{2}|$小的数是( )
| A. | 2 | B. | $\frac{3}{2}$ | C. | $\frac{1}{2}$ | D. | $-\frac{1}{3}$ |
6.应用题
老张装修完新房,元旦期间又到苏宁电器购买冰箱、电视机和洗衣机三件家电,刚好该商场推出新年优惠活动,具体优惠情况如下表:
比如:买原价5000元的商品,实际花费3000+(5000-3000)(1-5%)-160=4740(元)
(1)已知老张购买的这三件家电原价合计为11500元,如果一次性支付,请求出他的实际花费;
(2)如果在该商场购买一件原价为x元的商品(x≤10000),请用含x的代数式表示实际花费;
(3)付款时,老张突然想到:如果一次性支付,虽然优惠率更高,却只能享受一次立减160元优惠,如果将这三件家电分开支付或者两件合并支付,另一件单独支付,就可以享受多次立减160元优惠,这样是否可能更加划算呢?已知老张购买的冰箱原价4800元,电视机原价4600元,洗衣机原价2100元,请你通过计算帮老张设计出最优惠的支付方案.
老张装修完新房,元旦期间又到苏宁电器购买冰箱、电视机和洗衣机三件家电,刚好该商场推出新年优惠活动,具体优惠情况如下表:
| 购物金额(原价) | 优惠率 |
| 不超过3000元的部分 | 无优惠 |
| 超过3000元但不超过10000元部分 | 5% |
| 超过10000元的部分 | 10% |
| 付款时,还可以享受单笔消费满2000元立减160元优惠 | |
(1)已知老张购买的这三件家电原价合计为11500元,如果一次性支付,请求出他的实际花费;
(2)如果在该商场购买一件原价为x元的商品(x≤10000),请用含x的代数式表示实际花费;
(3)付款时,老张突然想到:如果一次性支付,虽然优惠率更高,却只能享受一次立减160元优惠,如果将这三件家电分开支付或者两件合并支付,另一件单独支付,就可以享受多次立减160元优惠,这样是否可能更加划算呢?已知老张购买的冰箱原价4800元,电视机原价4600元,洗衣机原价2100元,请你通过计算帮老张设计出最优惠的支付方案.