ÌâÄ¿ÄÚÈÝ
15£®| A£® | $\frac{¦Ð}{8}{£¨{\sqrt{2}}£©^{n-1}}$ | B£® | $\frac{¦Ð}{8}{£¨{\sqrt{2}}£©^n}$ | C£® | $\frac{¦Ð}{4}{£¨{\sqrt{2}}£©^{n-1}}$ | D£® | $\frac{¦Ð}{4}{£¨{\sqrt{2}}£©^n}$ |
·ÖÎö ¸ù¾ÝÖ±ÏßlµÄ½âÎöʽΪy=x£¬ÒÔ¼°Ô²»¡µÄ×÷·¨£¬ÕÒ³ö²¿·Ö°ë¾¶OCnµÄÖµ£¬¸ù¾ÝÊýµÄ±ä»¯ÕÒ³ö±ä»¯¹æÂÉ¡°OCn=$£¨\sqrt{2}£©^{n-1}$¡±£¬ÔÙ¸ù¾Ý»¡³¤¹«Ê½¼´¿ÉÇó³ömnµÄÖµ£®
½â´ð ½â£º¹Û²ì£¬·¢ÏÖ¹æÂÉ£ºOC1=1£¬OC2=$\sqrt{2}$£¬OC3=2£¬OC4=2$\sqrt{2}$£¬¡£¬
¡àOCn=$£¨\sqrt{2}£©^{n-1}$£¬
¡àmn=$\frac{45¡ã}{180¡ã}$¦Ð•OCn=$\frac{¦Ð}{4}$$£¨\sqrt{2}£©^{n-1}$£®
¹ÊÑ¡C£®
µãÆÀ ±¾Ì⿼²éÁËÒ»´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷ÒÔ¼°¹æÂÉÐÍÖеÄÊýµÄ±ä»¯£¬½âÌâµÄ¹Ø¼üÊÇÕÒ³ö°ë¾¶µÄ±ä»¯¹æÂÉ¡°OCn=$£¨\sqrt{2}£©^{n-1}$¡±£®±¾ÌâÊôÓÚÖеµÌ⣬ÄѶȲ»´ó£¬½â¾ö¸ÃÌâÐÍÌâĿʱ£¬¸ù¾Ý°ë¾¶µÄ±ä»¯ÕÒ³ö±ä»¯¹æÂÉÊǹؼü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
20£®£¨a-3b£©2-£¨a+3b£©£¨a-3b£©µÄֵΪ£¨¡¡¡¡£©
| A£® | -6ab | B£® | -3ab+18b2 | C£® | -6ab+18b2 | D£® | -18b2 |
4£®ÏÂÁг˷¨ËãʽÖУ¬²»ÄÜÓÃÆ½·½²î¹«Ê½½øÐÐÔËËãµÄÊÇ£¨¡¡¡¡£©
| A£® | £¨m+n£©£¨-m-n£© | B£® | £¨-m+n£©£¨-m-n£© | C£® | £¨-m-n£©£¨m-n£© | D£® | £¨m+n£©£¨-m+n£© |