题目内容
14.解方程组:(1)$\left\{\begin{array}{l}{y=2x-3}\\{3x+2y=8}\end{array}\right.$
(2)$\left\{\begin{array}{l}{x+y=7}\\{3x+y=17}\end{array}\right.$.
分析 (1)方程组利用代入消元法求出解即可;
(2)方程组利用加减消元法求出解即可.
解答 解:(1)$\left\{\begin{array}{l}{y=2x-3①}\\{3x+2y=8②}\end{array}\right.$,
把①代入②得:3x+2(2x-3)=8,
解得:x=2,
把x=2代入①得:y=1,
则方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{x+y=7①}\\{3x+y=17②}\end{array}\right.$,
②-①得:2x=10,即x=5,
把x=5代入①得:y=2,
则方程组的解为$\left\{\begin{array}{l}{x=5}\\{y=2}\end{array}\right.$.
点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
练习册系列答案
相关题目
6.要使$\frac{\sqrt{x+2}}{x}$有意义,则x的取值范围是( )
| A. | x>-2 | B. | x≠0 | C. | x≥-2且x≠0 | D. | x>-2且x≠0 |
3.计算:$\sqrt{18}$-$\sqrt{2}$=( )
| A. | 3 | B. | $\sqrt{2}$ | C. | 2$\sqrt{2}$ | D. | 4$\sqrt{2}$ |