题目内容

8.如图1,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,

(1)若∠1=40°,∠2=30°,求∠A的度数;
(2)通过第(1)请你写出∠1、∠2与∠A的关系∠1+∠2=2∠A;
(3)把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外部如图2所示时,请你直接写出∠1、∠2与∠A的关系∠A=$\frac{1}{2}$(∠1-∠2)..

分析 (1)连接AA′,根据折叠的性质得到∠DAE=∠DA′E,根据三角形的外角的性质计算即可;
(2)与(1)的证明过程类似,证明即可;
(3)根据折叠的性质和三角形内角和定理解答即可.

解答 解:(1)如图1,连接AA′.
则△A′ED即为折叠前的三角形,
由折叠的性质知:∠DAE=∠DA′E.
由三角形的外角性质知:
∠1=∠EAA′+∠EA′A,∠2=∠DAA′+∠DA′A;
则∠1+∠2=∠DAE+∠DA′E=2∠DAE,
即∠1+∠2=2∠A,
则∠A=35°;
(2)连接AA′.
则△A′ED即为折叠前的三角形,
由折叠的性质知:∠DAE=∠DA′E.
由三角形的外角性质知:
∠1=∠EAA′+∠EA′A,∠2=∠DAA′+∠DA′A;
则∠1+∠2=∠DAE+∠DA′E=2∠DAE,
即∠1+∠2=2∠A,
故答案是:∠1+∠2=2∠A;
(3)∵△A′DE是△ADE沿DE折叠得到,
∴∠A′=∠A,
又∵∠AEA′=180°-∠2,∠3=∠A′+∠1,
∴∠A+∠AEA′+∠3=180°,
即∠A+180°-∠2+∠A′+∠1=180°,
整理得,2∠A=∠2-∠1.
∴∠A=$\frac{1}{2}$(∠1-∠2).
故答案为:∠A=$\frac{1}{2}$(∠1-∠2).

点评 本题考查的是三角形的外角性质和图形的翻折变换,理清图中角与角的关系是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网