题目内容
16.我们曾经解决过如下问题:“如图,点M,N分别在直线AB同侧,如何在直线AB上找到一个点P,使得PM+PN最小?”
我们可以经过如下步骤解决这个问题:
(1)画草图(或目标图)分析思路:在直线AB上任取一点P′,连接P′M,P′N,根据题目需要,作点M关于直线AB的对称点M′,将P′M+P′N转化为P′M′+P′N′,“化曲为直”寻找P′M′+P′N的最小值;
(2)设计画图步骤;
(3)回答结论并验证.
借鉴阅读材料中解决问题的三个步骤完成以下尺规作图:
已知三条线段h,m,c,求作△ABC,使其BC边上的高AH=h,中线AD=m,AB=c.
(1)请先画草图(画出一个即可),并叙述简要的作图思路(即实现目标图的大致作图步骤);
(2)完成尺规作图(不要求写作法,作出一个满足条件的三角形即可).
分析 (1)根据BC边上的高AH=h,中线AD=m,AB=c进行作图即可;
(2)先由长为h,m的两条线段作Rt△ADH,再由线段c作边AB确定点B,再倍长BD确定点C即可.
解答 解:(1)草图如图所示:![]()
作图思路:先由长为h,m的两条线段作Rt△ADH,再由线段c作边AB确定点B,再倍长BD确定点C.
(2)如图所示,△ABC即为所求.![]()
点评 本题主要考查了运用轴对称变换进行作图,解决问题的关键是先作出Rt△ADH.解题时时注意:解决此类题目需要熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.
练习册系列答案
相关题目