ÌâÄ¿ÄÚÈÝ
2£®£¨1£©ÇóBµãµÄ×ø±êºÍkµÄÖµ£»
£¨2£©Çó¡÷AOBµÄÃæ»ýSÓëxÖ®¼äµÄº¯Êý¹ØÏµÊ½£»
£¨3£©Ì½Ë÷£º
¢Ùµ±µãAÔ˶¯µ½Ê²Ã´Î»ÖÃʱ£¬¡÷AOBµÄÃæ»ýÊÇ$\frac{1}{4}$£¿
¢ÚÔÚ¢ÙµÄÇéÐÎÏ£¬yÖáÉÏÊÇ·ñ´æÔÚÒ»µãP£¬Ê¹¡÷POAÊǵÈÑüÈý½ÇÐΣ¿Èô´æÔÚ£¬Çëд³öÂú×ãÌõ¼þµÄËùÓÐPµãµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©Ðè¸ù¾ÝOC=1Çó³öBµã×ø±ê£¬ÔÙÀûÓôý¶¨ÏµÊý·¨Çó³ökÖµ£»
£¨2£©ÀûÓðѡ÷AOBµÄÃæ»ý±íʾ³öÀ´£¬ÔÚ¸ù¾ÝSÓëxÖ®¼äµÄ¹ØÏµ´úÈëÕûÀí£»
£¨3£©¢ÙÀûÓã¨2£©µÃ³öº¯Êý¹ØÏµÊ½¼´¿ÉµÃ³öµãAµÄ×ø±ê£»
¢Ú·ÖÈýÖÖÇé¿öÌÖÂÛ¼ÆËã¼´¿É£®
½â´ð ½â£º£¨1£©2x2-3x+1=0£¬
£¨2x-1£©£¨x-1£©=0
2x-1=0£¬x-1=0£¬
½âµÃx1=$\frac{1}{2}$£¬x2=1£¬
¡ßOB£¼OC£¬
¡àµãB£¨$\frac{1}{2}$£¬0£©£»
°ÑµãB´úÈëy=kx-1µÃ£¬$\frac{1}{2}$k-1=0£¬
½âµÃ£ºk=2£¬
£¨2£©Ö±Ïß½âÎöʽΪy=2x-1£¬
¡÷AOBµÄÃæ»ýS=$\frac{1}{2}$¡Á$\frac{1}{2}$¡Á£¨2x-1£©=$\frac{1}{2}$x-$\frac{1}{4}$£¬
£¨3£©¢Ù¡÷AOBÃæ»ýS=$\frac{1}{2}$x-$\frac{1}{4}$£¬
µ±S=$\frac{1}{4}$ʱ£¬$\frac{1}{2}$x-$\frac{1}{4}$=$\frac{1}{4}$£¬
½âµÃ£ºx=1£¬
´Ëʱy=1£¬
ÔòµãAµÄ×ø±êΪ£¨1£¬1£©£»
¢Ú´æÔÚÕâÑùµÄµãP£®ÀíÓÉÈçÏ£º
ÓÉ¢ÚÖª£¬AµÄ×ø±êÊÇ£¨1£¬1£©£¬ÔòOA=$\sqrt{2}$£®
Èçͼ£¬![]()
i£©µ±OÊÇ¡÷AOPµÄ¶¥½Ç¶¥µãʱ£¨OA=OP£©£¬PµÄ×ø±êÊÇ£¨0£¬$\sqrt{2}$£©»ò£¨0£¬-$\sqrt{2}$£©£¬
ii£©µ±AÊÇ¡÷AOPµÄ¶¥½Ç¶¥µãʱ£¨AO=AP£©£¬PÓë¹ýAµÄÓëxÖá´¹Ö±µÄÖ±Ï߶Գƣ¬ÔòPµÄ×ø±êÊÇ£¨0£¬2£©£»
iii£©µ±PÊÇ¡÷AOPµÄ¶¥½Ç¶¥µãʱ£¨PA=PO£©£¬ÉèP£¨0£¬x£©£¬Ôò
x=$\sqrt{£¨x-1£©^{2}+1}$£¬
½âµÃ£¬x=1£¬
ÔòP£¨0£¬1£©£®
×ÛÉÏËùÊö£¬·ûºÏÌõ¼þµÄµãPµÄ×ø±êÊÇ£º£¨0£¬$\sqrt{2}$£©»ò£¨0£¬-$\sqrt{2}$£©»ò£¨0£¬2£©»ò£¨0£¬1£©£®
µãÆÀ ±¾ÌâÊÇÒ»´Îº¯Êý×ÛºÏÌ⣬Ö÷ÒªÀûÓÃÁ˽âÒ»Ôª¶þ´Î·½³Ì£¬´ý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý½âÎöʽ£¬Èý½ÇÐεÄÃæ»ý£¬µÈÑüÈý½ÇÐÎÈýÏߺÏÒ»µÄÐÔÖÊ£¬ÄѵãÔÚÓÚ£¨2£©¢Ú¸ù¾ÝµÈÑüÈý½ÇÐεÄÑü³¤µÄ²»Í¬·ÖÇé¿öÌÖÂÛ£®
| A£® | 625£¨1+x£©2=1225 | B£® | 1225£¨1+x£©2=625 | C£® | 625£¨1-x£©2=1225 | D£® | 1225£¨1-x£©2=625 |
| A£® | 0 | B£® | 1 | C£® | -1 | D£® | 2 |
| A£® | $-0.3£¼-\frac{1}{3}$ | B£® | $-\frac{6}{5}£¾-\frac{7}{6}$ | C£® | £¨-2£©3£¾£¨-2£©2 | D£® | $-\frac{9}{10}£¾-\frac{10}{9}$ |