题目内容
3.把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子,或可以求出一些不规则图形的面积.(1)如图1,是将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形.
①若用不同的方法计算这个边长为a+b+c的正方形面积,就可以得到一个等式,这个等式可以为(a+b+c)2=a2+b2+c2+2ab+2bc+2ac.
③因式分解:a2+4b2+9c2+4ab+12bc+6ca.
(2)如图2,是将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF,若两正方形的边长满足a+b=6,ab=8,请求出阴影部分的面积.
分析 (1)①此题根据面积的不同求解方法,可得到不同的表示方法.一种可以是3个正方形的面积和6个矩形的面积,种是大正方形的面积,可得等式(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;
③分组分解得出答案即可;
(2)利用S阴影=正方形ABCD的面积+正方形ECGF的面积-三角形BGF的面积-三角形ABD的面积求解.
解答 解:(1)①这个等式可以为(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;
故答案为:(a+b+c),a2+b2+c2+2ab+2bc+2ac;
③a2+4b2+9c2+4ab+12bc+6ca
=(a+2b)2+6c(a+2b)+9c2=(a+2b+3c)2.
(2)∵a+b=6,ab=8,
∴S阴影=a2+b2-$\frac{1}{2}$(a+b)•b-$\frac{1}{2}$a2=$\frac{1}{2}$a2+$\frac{1}{2}$b2-$\frac{1}{2}$ab=$\frac{1}{2}$(a+b)2-$\frac{3}{2}$ab=$\frac{1}{2}$×62-$\frac{3}{2}$×8=6.
点评 本题考查了因式分解的实际运用,解题的关键是注意图形的分割与拼合,会用不同的方法表示同一图形的面积.
练习册系列答案
相关题目
18.
直线a,b,c,d的位置如图所示,如果∠1=∠2,∠3=43°,那么∠4等于( )
| A. | 130° | B. | 137° | C. | 140° | D. | 143° |
12.
如图,在菱形ABCD中,过点A作AE⊥BC,BC于点E,若菱形ABCD的面积为24,AE=4,则AB的长为( )
| A. | 12 | B. | 6 | C. | $\sqrt{13}$ | D. | 2$\sqrt{13}$ |
13.为了解初中生的健康状况,相关部分随机抽取了某校的部分学生进行体育测试,以下是根据测试成绩绘制的统计图表的一部分,请根据图表信息回答下列问题:

(1)表中a=45%,b=15%,本次共抽取了多少名学生进行测试?
(2)扇形图中区域B所对应的扇形圆心角的度数为162°;
(3)若该校有2000名学生,请估计成绩为优秀或良好的学生人数.
| 组别 | 测试成绩 | 百分比 |
| A | 优秀 | 10% |
| B | 良好 | a |
| C | 及格 | 30% |
| D | 不及格 | b |
(1)表中a=45%,b=15%,本次共抽取了多少名学生进行测试?
(2)扇形图中区域B所对应的扇形圆心角的度数为162°;
(3)若该校有2000名学生,请估计成绩为优秀或良好的学生人数.