题目内容

17.如图,已知BD为∠ABC的平分线,CD为△ABC的外角∠ACE的平分线,CD与BD交于点D,试说明∠A=2∠D.

分析 根据角平分线的定义及三角形的外角性质可表示出∠A与∠D,从而不难发现两者的数量关系,进一步得出答案即可.

解答 解:∵∠ABC的平分线交∠ACE的外角平分线∠ACE的平分线于点D,
∴∠ABC=2∠DBC,∠ACE=2∠DCE,
∵∠DCE是△BCD的外角,
∴∠D=∠DCE-∠DBE,
∵∠ACE是△ABC的外角,
∠A=∠ACE-∠ABC=2∠DCE-2∠DBE=2(∠DCE-∠DBE),
∴∠A=2∠D.

点评 此题主要考查角平分线的意义以及三角形的外角的性质:三角形的一个外角等于和它不相邻的两个内角的和,解决本题的关键是三角形外角的性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网