题目内容

10.如图1,菱形纸片ABCD的边长为2,∠ABC=60°,将菱形ABCD沿EF,GH折叠,使得点B,D两点重合于对角线BD上一点P(如图2),则六边形AEFCHG面积的最大值是(  )
A.$\frac{3\sqrt{3}}{2}$B.$\frac{3\sqrt{3}}{4}$C.2-$\sqrt{3}$D.1+$\sqrt{3}$

分析 由六边形AEFCHG面积=菱形ABCD的面积-△EBF的面积-△GDH的面积.得出函数关系式,进而求出最大值.

解答 解:六边形AEFCHG面积=菱形ABCD的面积-△EBF的面积-△GDH的面积.
∵菱形纸片ABCD的边长为2,∠ABC=60°,
∴AC=2,
∴BD=2$\sqrt{3}$,
∴S菱形ABCD=$\frac{1}{2}$AC•BD=$\frac{1}{2}×$2×2$\sqrt{3}$=2$\sqrt{3}$,
设AE=x,
则六边形AEFCHG面积=2$\sqrt{3}$-$\frac{1}{2}$×(2-x)•$\frac{\sqrt{3}}{2}$(2-x)-$\frac{1}{2}$x•$\frac{\sqrt{3}}{2}$x
=-$\frac{\sqrt{3}}{2}$x2+$\sqrt{3}$x+$\sqrt{3}$
=-$\frac{\sqrt{3}}{2}$(x-1)2+$\frac{3}{2}$$\sqrt{3}$,
∴六边形AEFCHG面积的最大值是$\frac{3}{2}$$\sqrt{3}$.
故选A.

点评 考查了翻折变换(折叠问题),二次函数最值问题,本题关键是设出未知数表示六边形面积,把图形问题转化为函数问题,有一定的难度.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网