题目内容

1.如图,在平面直角坐标系中,正方形ABCD的顶点A(1,1),B(1,-1),C(-1,-1),D(-1,1),y轴上有一点P(0,2),作点P关于点A的对称点P1,作点P1关于点B的对称点P2,作点P2关于点C的对称点P3,作点P3关于点D的对称点P4,作点P4关于点A的对称点P5,作点P5关于点B的对称点P6,…,按此规律操作下去,则点P2017的坐标为(  )
A.(2,0)B.(0,2)C.(0,-2)D.(-2,0)

分析 首先求出点P1,P2,P3,P4的坐标,从而发现点的坐标以4为周期,作循环往复的周期变化,即可解决问题.

解答 解:∵点P坐标为(0,2),点A坐标为(1,1),
∴点P关于点A的对称点P1的坐标为(2,0),
点P1关于点B(1,-1)的对称点P2的坐标(0,-2),
点P2关于点C(-1,-1)的对称点P3的坐标为(-2,0),
点P3关于点D(-1,1)的对称点P4的坐标为(0,2),
即点P4与点P重合了;
∵2017=4×504+1,
∴点P2017的坐标与点P1的坐标相同,
∴点P2017的坐标为(2,0),
故选:A.

点评 此题主要考查了点的坐标,解题的关键是首先探索出个别点的坐标的变化规律,然后从特殊到一般去发现一般规律,进而利用规律去解决问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网