题目内容
8.| A. | 8 | B. | 6 | C. | 9 | D. | 12 |
分析 连接EC,过A作AM∥BC交FE的延长线于M,求出平行四边形ACFM,根据等底等高的三角形面积相等得出△BDE的面积和△CDE的面积相等,△ADE的面积和△AME的面积相等,推出阴影部分的面积等于平行四边形ACFM的面积的一半,求出CF×hCF的值即可.
解答 解:连接EC,过A作AM∥BC交FE的延长线于M,
∵四边形CDEF是平行四边形,
∴DE∥CF,EF∥CD,
∴AM∥DE∥CF,AC∥FM,
∴四边形ACFM是平行四边形,
∵△BDE边DE上的高和△CDE的边DE上的高相同,![]()
∴△BDE的面积和△CDE的面积相等,
同理△ADE的面积和△AME的面积相等,
即阴影部分的面积等于平行四边形ACFM的面积的一半,是$\frac{1}{2}$×CF×hCF,
∵△ABC的面积是36,BC=3CF
∴$\frac{1}{2}$BC×hBC=$\frac{1}{2}$×3CF×hCF=36,
∴CF×hCF=24,
∴阴影部分的面积是$\frac{1}{2}$×24=12,
故选:D.
点评 本题考查了平行四边形的性质和判定,三角形的面积的应用,主要考查学生的推理能力和转化能力,题目比较好,但是有一定的难度.
练习册系列答案
相关题目
16.由4名同学每人写一个实系数一元二次方程,所得的四个方程中恰有两个无实数根的概率为( )
| A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{5}$ | D. | $\frac{3}{8}$ |