题目内容

如图,在△ABC中,AB=1,AC=2,现将△ABC绕点C顺时针旋转90°得到△A′B′C′,连接AB′,并有AB′=3,则∠A′的度数为(  )
A、125°B、130°
C、135°D、140°
考点:旋转的性质
专题:
分析:如图,作辅助线;首先证明∠AA′C=45°,然后证明AB′2=AA′2+A′B′2,得到∠AA′B′=90°,进而得到∠A′=135°,即可解决问题.
解答:解:如图,连接AA′.由题意得:
AC=A′C,A′B′=AB,∠ACA′=90°,
∴∠AA′C=45°,AA′2=22+22=8;
∵AB′2=32=9,A′B′2=12=1,
∴AB′2=AA′2+A′B′2
∴∠AA′B′=90°,∠A′=135°,
故选C.
点评:该题主要考查了旋转变换的性质、勾股定理的逆定理及其应用问题;解题的关键是作辅助线,将分散的条件集中.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网