ÌâÄ¿ÄÚÈÝ
10£®£¨1£©ÒÑÖª£º¶¯µãP¡¢QµÄËÙ¶È·Ö±ðÊÇ1cm/sºÍ2cm/s£®Çó£ºÔ˶¯¶à³¤Ê±¼äºó£¬ÒÔA¡¢C¡¢P¡¢QËĵãΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ¿£¨Ð´³öÇó½â¹ý³Ì£©
£¨2£©ÈôÒÔA¡¢C¡¢P¡¢QËĵãΪ¶¥µãµÄËıßÐÎÊǾØÐΣ¬Çó£ºP¡¢QÁ½µãÔ˶¯ËÙ¶ÈÖ®±È£®£¨²»Ð´Çó½â¹ý³Ì£©VP£ºVQ=5£º9»ò19£º23£®
£¨3£©ÈôÒÔA¡¢C¡¢P¡¢QËĵãΪ¶¥µãµÄËıßÐÎÊÇÁâÐΣ¬Çó£ºP¡¢QÁ½µãÔ˶¯ËÙ¶ÈÖ®±È£®£¨²»Ð´Çó½â¹ý³Ì£¬½á¹û¿ÉÒÔ²»»¯¼ò£©VP£ºVQ=£¨5+2$\sqrt{13}$£©£º£¨9-2$\sqrt{13}$£©»òVP£ºVQ=£¨19+2$\sqrt{13}$£©£º£¨23-2$\sqrt{13}$£©£¬£®
·ÖÎö £¨1£©Èçͼ1ÖУ¬µ±AC=PQʱ£¬ÒÔA¡¢C¡¢P¡¢QËĵãΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ¬Áгö·½³Ì¼´¿É½â¾öÎÊÌ⣮
£¨2£©Èçͼ2ÖУ¬×÷AE¡ÎCD½»BDÓÚE£¬×÷AH¡ÍBDÓÚD£¬CF¡ÍBDÓÚF£¬·ÖÁ½ÖÖÇéÐÎÌÖÂÛ¼´¿É£®
£¨3£©Èçͼ3ÖУ¬×÷AE¡ÎCD½»BDÓÚE£¬×÷AH¡ÍBDÓÚD£¬CF¡ÍBDÓÚFµ±AP=AC=PQʱ£¬ËıßÐÎAPQCÊÇÁâÐΣ¬ÓÉ£¨2£©¿ÉÖª£¬AE=CD=15£¬AD=12£¬BD=5£¬·ÖÁ½ÖÖÇéÐÎÁгö·½³Ì½â¾ö£®
½â´ð ½â£º£¨1£©Èçͼ1ÖУ¬µ±AC=PQʱ£¬ÒÔA¡¢C¡¢P¡¢QËĵãΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐÎ![]()
ÓÉÌâÒ⣺28-t-2t=14»ò2t+t-28=14£¬
¡àt=$\frac{14}{3}$»ò14£¬
¡àÔ˶¯$\frac{14}{3}$ »ò14Ãëʱ¼äºó£¬ÒÔA¡¢C¡¢P¡¢QËĵãΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ®
£¨2£©Èçͼ2ÖУ¬×÷AE¡ÎCD½»BDÓÚE£¬×÷AH¡ÍBDÓÚD£¬CF¡ÍBDÓÚF£®![]()
¡ßAC¡ÎED£¬AE¡ÎCD£¬
¡àËıßÐÎAEDCÊÇÆ½ÐÐËıßÐΣ¬
¡àAE=CD=15£¬ÉèBDΪx£¬ÔòAB2-BH2=AE2-HE2£¬
¡à132-x2=152-£¨14-x£©2£¬
½âµÃx=5£¬
¡àAH=12£¬BH=5£¬HE=9£¬
ÔÚRT¡÷CFDÖУ¬DF=$\sqrt{C{D}^{2}-C{F}^{2}}$=9£¬
¢Ùµ±µãPÔ˶¯µ½µãD¡¢µãQÔ˶¯µ½µãFʱ£¬ÒÔA¡¢C¡¢P¡¢QËĵãΪ¶¥µãµÄËıßÐÎÊǾØÐΣ¬
¡àVP£ºVQ=BH£ºDF=5£º9£¬
¢Úµ±µãPÔ˶¯µ½µãF¡¢µãQÔ˶¯µ½µãDʱ£¬ÒÔA¡¢C¡¢P¡¢QËĵãΪ¶¥µãµÄËıßÐÎÊǾØÐΣ¬
¡àVP£ºVQ=BF£ºDH=19£º23£®
¹Ê´ð°¸·Ö±ðΪ5£º9»ò19£º23£®
£¨3£©Èçͼ3ÖУ¬×÷AE¡ÎCD½»BDÓÚE£¬×÷AH¡ÍBDÓÚD£¬CF¡ÍBDÓÚF£®![]()
µ±AP=AC=PQʱ£¬ËıßÐÎAPQCÊÇÁâÐΣ¬ÓÉ£¨2£©¿ÉÖª£¬AE=CD=15£¬AD=12£¬BD=5£¬
¡ßAC=AP=14£¬
¡àDP=$\sqrt{1{4}^{2}-1{2}^{2}}$=2$\sqrt{13}$£¬
¡àBP=5+2$\sqrt{13}$£¬DQ=14-5-2$\sqrt{2}$=9-2$\sqrt{3}$£¬
¡àVP£ºVQ=BP£ºDQ=£¨5+2$\sqrt{13}$£©£º£¨9-2$\sqrt{13}$£©»òVP£ºVQ=£¨19+2$\sqrt{13}$£©£º£¨23-2$\sqrt{13}$£©£¬
¹Ê´ð°¸Îª=£¨5+2$\sqrt{13}$£©£º£¨9-2$\sqrt{13}$£©»òVP£ºVQ=£¨19+2$\sqrt{13}$£©£º£¨23-2$\sqrt{13}$£©£¬
µãÆÀ ±¾Ì⿼²éËıßÐÎ×ÛºÏÌ⡢ƽÐÐËıßÐεÄÐÔÖÊ¡¢¹´¹É¶¨ÀíµÈ֪ʶ£¬ÁË¡¢ÌâµÄ¹Ø¼üÊÇÌí¼Ó¸¨ÖúÏß¹¹ÔìÏàËÆÈý½ÇÐνâ¾öÎÊÌ⣬ËùÒÔÖп¼³£¿¼ÌâÐÍ£®
| A£® | $\overrightarrow{DE}$¡Î$\overrightarrow{BC}$ | B£® | $\overrightarrow{AD}-\overrightarrow{AE}=\overrightarrow{DE}$ | C£® | $\overrightarrow{DB}$=$-\overrightarrow{FE}$ | D£® | $\overrightarrow{DB}+\overrightarrow{DE}+\overrightarrow{FE}=\overrightarrow{DE}$ |
| A£® | Èç¹ûÁ½ÌõÖ±Ïß¶¼ÓëµÚÈýÌõÖ±Ï߯½ÐУ¬ÄÇôÕâÁ½ÌõÖ±ÏßÒ²»¥ÏàÆ½ÐÐ | |
| B£® | ÔÚÍ¬Ò»Æ½ÃæÄÚ£¬¹ýÒ»µãÓÐÇÒÖ»ÓÐÒ»ÌõÖ±ÏßÓëÒÑÖªÖ±Ïß´¹Ö± | |
| C£® | Á½ÌõÖ±Ïß±»µÚÈýÌõÖ±ÏßËù½Ø£¬Í¬ÅÔÄڽǻ¥²¹ | |
| D£® | Á½Ö±Ï߯½ÐУ¬ÄÚ´í½ÇÏàµÈ |