ÌâÄ¿ÄÚÈÝ
1£®ÎÊÌâ½â¾ö£ºÒÑÖªA£¨1£¬4£©¡¢B£¨7£¬2£©
£¨1£©ÊÔÇóA¡¢BÁ½µãµÄ¾àÀ룻
£¨2£©ÔÚxÖáÉÏÕÒÒ»µãP£¨²»Çó×ø±ê£¬»³öͼÐμ´¿É£©£¬Ê¹PA+PBµÄ³¤¶È×î¶Ì£¬Çó³öPA+PBµÄ×î¶Ì³¤¶È£»
£¨3£©ÔÚxÖáÉÏÓÐÒ»µãM£¬ÔÚYÖáÉÏÓÐÒ»µãN£¬Á¬½ÓA¡¢N¡¢M¡¢BµÃËıßÐÎANMB£¬ÈôËıßÐÎANMBµÄÖܳ¤×î¶Ì£¬ÇëÕÒµ½µãM¡¢N£¨²»Çó×ø±ê£¬»³öͼÐμ´¿É£©£¬Çó³öËıßÐÎANMBµÄ×îСÖܳ¤£®
·ÖÎö £¨1£©¸ù¾ÝÁ½µã¼äµÄ¾àÀ빫ʽ¿ÉÒÔ½â´ð±¾Ì⣻
£¨2£©¸ù¾ÝÁ½µãÖ®¼äÏß¶Î×î¶ÌºÍµãµÄ¶Ô³Æ¿ÉÒÔ½â´ð±¾Ì⣻
£¨3£©¸ù¾ÝÁ½µãÖ®¼äÏß¶Î×î¶ÌºÍµãµÄ¶Ô³Æ¿ÉÒÔ½â´ð±¾Ì⣮
½â´ð ½â£º£¨1£©¡ßA£¨1£¬4£©¡¢B£¨7£¬2£©£¬
¡àAB=$\sqrt{£¨{x}_{1}-{x}_{2}£©^{2}+£¨{y}_{1}-{y}_{2}£©^{2}}$
=$\sqrt{£¨1-7£©^{2}+£¨4-2£©^{2}}$
=2$\sqrt{10}$£¬
¼´A¡¢BÁ½µãµÄ¾àÀëΪ£º2$\sqrt{10}$£»
£¨2£©ÈçÓÒͼ1Ëùʾ£¬![]()
×÷µãA¹ØÓÚxÖáµÄ¶Ô³ÆµãA¡ä£¬
¡ßA£¨1£¬4£©¡¢B£¨7£¬2£©£¬
¡àA¡ä£¨1£¬-4£©£¬
¡àA¡äB=$\sqrt{£¨1-7£©^{2}+£¨-4-2£©^{2}}$=6$\sqrt{2}$£¬
¼´PA+PBµÄ×î¶Ì³¤¶ÈÊÇ6$\sqrt{2}$£»
£¨3£©×÷µãA¹ØÓÚyÖáµÄ¶Ô³ÆµãA¡ä£¬×÷µãB¹ØÓÚxÖáµÄ¶Ô³ÆµãB¡ä£¬Á¬½ÓA¡äB¡äÓÚyÖá½»ÓÚµãN£¬ÓëxÖá½»ÓÚµãM£¬Èçͼ2Ëùʾ£¬![]()
¡ßA£¨1£¬4£©¡¢B£¨7£¬2£©£¬
¡àA¡ä£¨-1£¬4£©£¬B¡ä£¨7£¬-2£©£¬
¡àAB=$\sqrt{£¨1-7£©^{2}+£¨4-2£©^{2}}$=2$\sqrt{10}$£¬
A¡äB¡ä=$\sqrt{£¨-1-7£©^{2}+£¨4+2£©^{2}}$=10£¬
¡àËıßÐÎANMBµÄ×îСÖܳ¤ÊÇ10+2$\sqrt{10}$£®
µãÆÀ ±¾Ì⿼²éÖá¶Ô³Æ-×î¶Ì·¾¶ÎÊÌâ£¬×ø±êÓëͼÐÎÐÔÖÊ£¬½âÌâµÄ¹Ø¼üÊÇÃ÷È·ÌâÒ⣬ÀûÓÃÊýÐνáºÏµÄ˼Ïë½â´ð£®