题目内容
11.分析 分两种情况:①当AP=BC=5时;②当AP=CA=10时;由HL证明Rt△ABC≌Rt△PQA(HL);即可得出结果.
解答 解:∵AX⊥AC,
∴∠PAQ=90°,
∴∠C=∠PAQ=90,
分两种情况:
①当AP=BC=5时,
在Rt△ABC和Rt△QPA中,$\left\{\begin{array}{l}{AB=PQ}\\{BC=AP}\end{array}\right.$,
∴Rt△ABC≌Rt△QPA(HL);
②当AP=CA=10时,
在△ABC和△PQA中,$\left\{\begin{array}{l}{AB=PQ}\\{AP=AC}\end{array}\right.$,
∴Rt△ABC≌Rt△PQA(HL);
综上所述:当点P运动到AP=5或10时,△ABC与△APQ全等;
故答案为:5或10.
点评 本题考查了直角三角形全等的判定方法;熟练掌握直角三角形全等的判定方法,本题需要分类讨论,难度适中.
练习册系列答案
相关题目
16.
如图,在Rt△ABC中,∠C=90°,斜边AB的垂直平分线DE交AB于点D,交BC于点E,且AE平分∠BAC,下列关系式不成立的是( )
| A. | DE=EC | B. | ∠B=∠CAE | C. | ∠DEA=∠CEA | D. | BE=AC |