题目内容

6.已知:如图,BD、CE是△ABC的高,M为BC的中点.试说明点B、C、D、E在以点M为圆心的同一个圆上.

分析 分别连接ME、MF,根据直角三角形中,斜边上的中线等于斜边的一半可得到ME=MD=MC=MB,可证得结论.

解答 证明:连接ME、MD,
∵BD、CE分别是△ABC的高,M为BC的中点,
∴ME=MD=MC=MB=$\frac{1}{2}$BC,
∴点B、C、D、E在以点M为圆心的同一圆上.

点评 本题主要考查直角三角形的性质,根据直角三角形中斜边上的中线等于斜边的一半得到ME=MF=MC=MB是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网