题目内容
12.化简:(1)a(1-a)+(a+1)2-1
(2)($\frac{3x+4}{{x}^{2}-1}$-$\frac{2}{x-1}$)÷$\frac{x+2}{{x}^{2}-2x+1}$.
分析 (1)根据完全平方公式、单项式乘多项式法则最快化简即可.
(2)先通分,除法转化为乘法,约分化简即可.
解答 解:(1)原式=a-a2+a2+2a+1-1=3a.
(2)原式=$\frac{3x+4-2(x+1)}{(x+1)(x-1)}$•$\frac{(x-1)^{2}}{x+2}$=$\frac{x+2}{(x+1)(x-1)}$•$\frac{(x-1)^{2}}{x+2}$=$\frac{x-1}{x+1}$
点评 本题考查分式的混合运算、乘法公式等知识,解题的关键是熟练应用乘法公式,掌握分式混合运算法则,属于中考常考题型.
练习册系列答案
相关题目
20.一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:
(1)求y与x的函数关系式;
(2)该批发商若想获得4000元的利润,应将售价定为多少元?
| 售价x(元/千克) | … | 50 | 60 | 70 | 80 | … |
| 销售量y(千克) | … | 100 | 90 | 80 | 70 | … |
(2)该批发商若想获得4000元的利润,应将售价定为多少元?
4.不等式组$\left\{\begin{array}{l}{x>-1}\\{x>2}\end{array}\right.$的解集是( )
| A. | x>-1 | B. | -1<x<2 | C. | x>2 | D. | x<2 |
2.若$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$是方程组$\left\{\begin{array}{l}{kx-my=1}\\{mx+ky=8}\end{array}\right.$的解,则k,m的值为( )
| A. | $\left\{\begin{array}{l}{k=2}\\{m=3}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{k=2}\\{m=-3}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{k=3}\\{m=2}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{k=-3}\\{m=-2}\end{array}\right.$ |